Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fehlstellen in faserverstärkten Kunststoffen effizienter reparieren

09.01.2017

Faserverstärkte Kunststoffe (FVK) kommen in der Luftfahrt- und Automobilindustrie vielfach zum Einsatz. Allerdings ist die Reparatur von Bauteilen aus diesen Verbundwerkstoffen häufig weniger rentabel als ein Austausch. Um FVK-Bauteile langlebiger und ökoeffizienter zu machen, wollen das Laser Zentrum Hannover e.V. (LZH) und die Apodius GmbH nun ein neuartiges Messgerät zur Faserlagenorientierung mit einem innovativen laserbasierten Reparaturprozess kombinieren.

Fehlstellen in FVK-Bauteilen können fertigungs- oder auch betriebsbedingt sein. Wie rentabel eine Reparatur ist, hängt dabei von der Geometrie der Fehlstelle, den Werkzeugen und Reparaturverfahren sowie der Möglichkeit zur Automatisierung ab. Mittels Laserschäften und anschließender Patch-Reparatur lassen sich FVK-Bauteile faserverbundgerecht instandsetzen.


Gestufte und kontinuierliche Schäftungen als Reparaturvorbereitung.

LZH

Dabei wird das beschädigte Material lagenweise entweder kontinuierlich oder stufenförmig abgetragen. Passgenaue Ersatzstücke, sogenannte Patches, verschließen danach die Fehlstelle. Mit Harz lassen sich diese neu eingebrachten Faserlagen anschließend infiltrieren und konsolidieren. Auf diese Weise erreichen die Reparaturen hohe Festigkeiten.

Optisches System zur Detektion der Faserlagenorientierung

Die Herausforderung beim Laserschäften ist die präzise und rückstandslose Entfernung der beschädigten Faserlagen. Erschwert wird dies durch die variierende Dicke der Verbundschichten, die sowohl global, das heißt im gesamten Bauteil, als auch lokal, also örtlich beschränkt, auftreten kann. Abhilfe soll ein optisches System schaffen, das die Faserorientierung des freigelegten Materials erkennt.

Als Grundlage dient eine bestehende Systemtechnik der Apodius GmbH, die bereits bei der Herstellung trockener Faserhalbzeuge zum Einsatz kommt. Nun werden diese Faserorientierungsmessgeräte weiterentwickelt, um auch variierende Schichtdicken in Bauteilen aus Faserverbundwerkstoffen mit einer Kunststoffmatrix detektieren zu können.

Echtzeitauswertung ermöglicht Regelung des Laserprozesses

In Kombination mit dem scannerbasierten Laserschäftprozess des LZH ermöglicht das neue Faserorientierungsmessgerät eine höhere geometrische Auflösung als bei mechanischen Abtragverfahren.

„Aufgrund der Schnelligkeit des Bilderkennungsverfahrens können die Messdaten in Echtzeit ausgewertet werden. Damit ist die Grundvoraussetzung für eine Regelung des Schäftprozesses erfüllt. Somit rückt das Ziel, diesen Prozess zu automatisieren, deutlich näher“, erklärt Dr. Peter Jäschke, Leiter der Gruppe Verbundwerkstoffe am LZH. Ein weiterer Vorteil des Lasers gegenüber konventionellen Verfahren ist die kraft-, berührungs- und verschleißfreie Bearbeitung.

Langlebigere Bauteile für eine bessere Ökobilanz

Fehlstellen in FVK-Bauteilen sollen in Zukunft kosteneffizienter zu reparieren sein – so das Ziel der Projektpartner LZH und Apodius GmbH. Dadurch erübrigt sich in vielen Fällen der Austausch des Bauteils. „Für die Hersteller bedeutet dies sowohl eine Zeit- als auch Kostenersparnis. Und je länger die Lebensdauer der Bauteile ist, desto besser die Ökobilanz und Ressourceneffizienz“, sagt Dr. Dietmar Kracht, geschäftsführender Vorstand des LZH.

Das Projekt „Optische Messung der Faserlagenorientierung zur Regelung einer präzisen, laserbasierten FVK-Reparatur“ (ForLase) wird im Rahmen des Zentralen Innovationsprogramms Mittelstand (ZIM) vom Bundesministerium für Wirtschaft und Energie (BMWi) für eine Laufzeit von zwei Jahren gefördert.

Melanie Gauc | Laser Zentrum Hannover e.V.
Weitere Informationen:
http://www.lzh.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen
16.11.2018 | Karlsruher Institut für Technologie

nachricht Emulsionen masschneidern
15.11.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics