Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faserverbundbauteile ohne Trennmittel fertigen

31.10.2012
Um fertige Bauteile aus dem formgebenden Werkzeug zu lösen, benötigt man bislang Trennmittel. Allerdings müssen diese danach aufwendig entfernt werden. Die Alternative: Eine speziell beschichtete Trennfolie, die keinerlei Rückstände hinterlässt.

Wer einen Kuchen backt, muss vorher die Backform einfetten – der Kuchen bleibt sonst daran kleben. Bei der Herstellung von Faserverbundwerkstoffen ist es ähnlich: Dort sprüht man Trennmittel auf die Werkzeugoberfläche, um das Bauteil nach dem Aushärten entformen zu können. Sowohl auf dem Bauteil als auch auf dem Werkzeug bleiben dabei Reste des Trennmittels zurück.


Entformen, transferieren und schützen durch Flex PLAS® -Technologie aus dem Fraunhofer IFAM.
© Fraunhofer IFAM

Die Bauteiloberflächen müssen dann meist manuell abgeschliffen werden – ein mühsamer und nicht unkritischer Prozess. Wird zu viel Substanz abgetragen, leidet die Bauteilqualität. Auch die Werkzeuge müssen regelmäßig gereinigt werden – doch der damit verbundene Stillstand kostet viel Geld. Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM hat jetzt eine Trennfolie entwickelt, die diese Reinigungsschritte überflüssig macht. »Unsere Folie lässt sich auf jegliche Strukturen aufbringen und ermöglicht ein einfaches Entformen. Sie verfügt über eine 0,3 Mikrometer dünne plasmapolymere Trennschicht, die keine Rückstände auf der Bauteiloberfläche hinterlässt«, erklärt Dr. Matthias Ott, Projektleiter in der Abteilung Plasmatechnik und Oberflächen PLATO.

Die Beschichtung beruht auf einer IFAM-Entwicklung zur Herstellung antihaftbeschichteter Bauteilformen mittels Niederdruckplasmaverfahren. Dabei wird die zu beschichtende Form in einen Plasmareaktor gegeben und der Atmosphärendruck auf ein 10 000stel gesenkt. Anschließend führt man schichtbildende Gase in den Reaktor ein und zündet ein Plasma. Werden in das Plasma Moleküle eingespeist, die Silizium oder Kohlenstoff enthalten, bilden sie Schichten. Da die Moleküle hochreaktiv sind, haften sie hervorragend an der Form.

Dehnung bis zu 300 Prozent

Der Haken an der Sache: Da die Plasmareaktoren höchstens fünf Kubikmeter groß sind, können nur verhältnismäßig kleine Formen beschichtet werden. Zusammen mit den Experten der Fraunhofer-Projektgruppe Fügen und Montieren FFM des IFAM in Stade gingen die Bremer Forscher daher neue Wege: »Mit einer entsprechenden Trennfolie wollten wir das Verfahren auch für große Bauteile, etwa für Flugzeuge, nutzbar machen«, sagt Dipl.-Ing. Gregor Graßl, FFM-Projektleiter. Zwar gibt es bereits Trennfolien auf dem Markt. Diese sind jedoch sehr steif, somit auch nicht tiefziehfähig und eignen sich nur für einfache Formkonturen. Die IFAM-Wissenschaftler verwenden dagegen eine strapazierfähige und elastische Folie, die eine Dehnung von bis zu 300 Prozent aushält. Darüber hinaus ist sie mit weniger als 0,1 Millimeter sehr dünn. »Dadurch lässt sie sich auch auf gekrümmte oder strukturierte Formen aufbringen, ohne dass sich Falten bilden«, so Graßl.

Die Herausforderung bestand darin, die Beschichtung fest haftend auf die Folie zu bringen. »Wir haben einen Plasmaprozess entwickelt, bei dem die Schicht relaxiert – also in einen Gleichgewichtszustand übergeht –, sobald das Plasma ausgeschaltet ist und sich keine hochreaktiven Teilchen mehr bilden: Die Moleküle ordnen sich innerhalb der Schicht so an, dass sich an der Oberfläche keine reaktionsfähigen Gruppen mehr befinden«, erläutert Ott. Dadurch haften die Harze des Faserverbunds nicht auf der Trennschicht, die Trennschicht jedoch sehr gut auf der Folie. Sie löst sich selbst unter Belastungen wie extremer Dehnung nicht. Auf dem Faserverbundbauteil bleiben im Gegensatz zu den bisher verfügbaren Folien keine Rückstände trennaktiver Substanzen kleben. »Wir nutzen quasi eine neue Stoffklasse, die dank ihrer chemischen Struktur in sich fester ist als klassische Polymere«, so Ott.

Dass sie auch realen Fertigungsbedingungen standhält, hat die als FlexPLAS® bezeichnete Folie in der FFM-Entwicklungshalle bereits bewiesen. Derzeit ist sie bei verschiedenen Kunden im Testeinsatz.

Die Industrievereinigung Verstärkte Kunststoffe (AVK) verlieh Matthias Ott und seinem Kollegen Gregor Graßl für ihre wissenschaftliche Arbeit den AVK-Innovationspreis 2012. Die Forscher belegten in der Kategorie »lukrative Prozesse und Verfahren« den ersten Platz und nahmen die Auszeichnung auf der Composites Europe, der Europäischen Fachmesse für Verbundwerkstoffe, Technologie und Anwendungen, Anfang Oktober in Düsseldorf entgegen.

Dr. Matthias Ott | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/november/faserverbundbauteile-ohne-trennmittel-fertigen.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik
17.10.2018 | Max-Planck-Institut für Polymerforschung

nachricht Tiefsee ergründen – erstmalige LIBS-Messung bei 600 bar
16.10.2018 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics