Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbspiele mit Graphen

20.06.2012
Graphen besteht aus einer Lage von Kohlenstoffatomen, die wabenartig angeordnet sind – das besonders dünne und stabile Material birgt für Anwendungen in der Optoelektronik großes Potenzial.
Forscher vom Karlsruher Institut für Technologie, der TU Darmstadt, der University of Cambridge und IBM haben nun optoelektronische Bauteile auf Basis von Graphen entwickelt. Mit ihnen können informationstechnische Systeme langfristig kleiner und leistungsfähiger werden. In der Zeitschrift Nature Communications stellen die Forscher ihre Ergebnisse vor.

Graphen kommt im Alltag vor: Das Material steckt beispielsweise – in milliardenfach übereinanderstapelten Schichten – in den Minen herkömmlicher Bleistifte aus Graphit. Als einzelne, atomare Schicht ist Graphen ein außergewöhnlich stabiles Material, welches Hitze und Strom besonders gut leitet und zugleich Licht aufnehmen (absorbieren) und abgeben (emittieren) kann. Damit bietet das Material für Anwendungen in der Optoelektronik großes Potenzial. Die Optoelektronik befasst sich mit der Wandlung von elektrischen in optische Signale (Licht) und umgekehrt.

Eine optische Mikrokavität besteht aus zwei halbdurchlässigen Metallspiegeln, deren Abstand voneinander die Farbe des von Graphen erzeugten Lichts bestimmt. Bild: KIT

Langfristiges Ziel der Forschung ist es, optoelektronische Komponenten wie Leuchtdioden, die als Schnittstelle zwischen elektrischen und optischen Komponenten wirken, auf immer kleinere Dimensionen zu schrumpfen. Dadurch können informationstechnische Systeme langfristig deutlich kleiner und leistungsfähiger werden.

Die aktuelle Arbeit des Forscherteams um Professor Ralph Krupke vom Karlsruher Institut für Technologie (KIT) und der TU Darmstadt, Professor Hilbert von Löhneysen (KIT), Professor Andrea Ferrari von der University of Cambridge und Dr. Phaedon Avouris vom Forschungslabor der Firma IBM zeigt, dass optoelektronische Bauteile, die Licht unterschiedlicher Wellenlängen selektieren, auch mit Graphen realisierbar sind.

Die technische Herausforderung für die Forscher lag darin, zwischen Graphen und Elektroden einen Kontakt herzustellen und das Material zugleich in eine optische Mikrokavität zu integrieren. Eine optische Mikrokavität ist eine Struktur im Mikrometerbereich, die aus durch zwei für Licht unterschiedlicher Wellenlängen halbdurchlässige Spiegel mit einem genau definierten Abstand besteht. Mit dem genau festgelegten Spiegelabstand ist die Mikrokavität durchlässig für Licht einer bestimmten Farbe. Hierfür übertrug Dr. Antonio Lombardo (UC) Graphen auf das Zielsubstrat. Anschließend konnte der Physiker Michael Engel (KIT) durch komplexe Fabrikationsverfahren im Nano- und Mikrobereich Graphen mit Elektroden verbinden und zwischen zwei Silberspiegeln mit nur einigen Nanometer Abstand zueinander platzieren.

Durch das Anlegen einer elektrischen Spannung gelang es Dr. Mathias Steiner (IBM) und Michael Engel (KIT) Graphen zu erhitzen. Ähnlich wie eine Glühbirne beginnt das Material, bei hohen Temperaturen Licht zu emittieren. Die Farbe des emittierten Lichts ist jedoch, im Gegensatz zum Weißlicht einer Glühbirne, nun durch die umgebende Mikrokavität bestimmt.
Das DFG-Zentrum für funktionelle Nanostrukturen hat die Arbeit unterstützt.

Literatur:
Michael Engel, Mathias Steiner, Antonio Lombardo, Andrea C. Ferrari, Hilbert v. Löhneysen, Phaedon Avouris, and Ralph Krupke: Light–matter interaction in a microcavity-controlled graphene transistor. Nature Communications, published online 19 Juni 2012 (DOI: 10.1038/ncomms1911).
Die online-Version des Artikels ist abrufbar unter: http://www.nature.com/ncomms/journal/v3/n6/full/ncomms1911.html

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | Karlsruher Institut für Technolo
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen
16.11.2018 | Karlsruher Institut für Technologie

nachricht Emulsionen masschneidern
15.11.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics