Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entscheidender Schritt des Spinnvorgangs aufgeklärt: Wie spinnt die Spinne?

13.05.2010
Fünfmal so reißfest wie Stahl und dreimal so fest wie die derzeit besten synthetischen Fasern: Spinnenseide ist ein faszinierendes Material.

Doch niemand kann bisher die Super-Fäden technisch herstellen. Wie schafft es die Spinne, aus den im Inneren der Spinndrüse gespeicherten Spinnenseidenproteinen in Sekundenbruchteilen lange, hochstabile und elastische Fäden zu ziehen? Diesem Geheimnis sind Wissenschaftler der Universität Bayreuth (UBT) und der Technischen Universität München (TUM) nun auf die Spur gekommen. In der aktuellen Ausgabe des renommierten Wissenschaftsjournals Nature stellen sie ihre Ergebnisse vor.

"Die hohe Elastizität und extreme Reißfestigkeit der natürlichen Spinnenseide erreichen selbst Fasern aus reinem Spinnenseiden-Protein bisher nicht," sagt Professor Horst Kessler, Carl-von-Linde-Professor am Institute for Advanced Study der TU München (TUM-IAS). Daher ist eine Schlüsselfrage bei der künstlichen Herstellung stabiler Spinnenseide-Fäden: Wie schafft es die Spinne, das Rohmaterial in der Spinndrüse in hoher Konzentration bereit zu halten und bei Bedarf in Bruchteilen einer Sekunde daraus einen reißfesten Faden zu ziehen? Professor Thomas Scheibel, Inhaber des Lehrstuhls Biomaterialien der Universität Bayreuth, bis 2007 an der TU München tätig, ist dem Geheimnis der Spinnenseiden seit einigen Jahren auf der Spur.

Spinnenfäden bestehen aus Eiweißmolekülen, langen Ketten, die aus Tausenden von Aminosäure-Bausteinen aufgebaut sind. Röntgenstreuungsexperimente zeigen, dass sich im fertigen Faden Bereiche befinden, in denen mehrere Eiweißketten über stabile physikalische Bindungen miteinander vernetzt sind. Sie bewirken die Stabilität. Dazwischen befinden sich unvernetzte Bereiche, sie sind für die hohe Elastizität verantwortlich. In der Spinndrüse herrschen ganz andere Verhältnisse: In einer wässrigen Umgebung lagern hier die Seiden-Proteine in hoher Konzentration und warten auf ihren Einsatz. Die für die festen Quervernetzungen verantwortlichen Bereiche dürfen sich dabei nicht zu nahe kommen, da sonst die Eiweiße augenblicklich verklumpen würden. Es musste also eine Art Speicherform dieser Moleküle geben.

Die sonst so erfolgreiche Röntgenstrukturanalyse konnte zur Aufklärung nichts beitragen, da sie nur Kristalle analysieren kann. Bis zu dem Moment, an dem der feste Faden entsteht, spielt sich jedoch alles in Lösung ab. Die Untersuchungsmethode der Wahl war daher die Kernmagnetische Resonanz-Spektroskopie (NMR). An den Geräten des Bayerischen NMR-Zentrums gelang es dem Biochemiker Franz Hagn aus der Arbeitsgruppe von Horst Kessler, die Struktur eines Regulationselements aufzuklären, das für die Bildung des festen Fadens verantwortlich ist. Zusammen mit Lukas Eisoldt und John Hardy aus der Gruppe von Thomas Scheibel konnte darüber hinaus die Wirkungsweise dieses Regulationselements aufgeklärt werden.

"Unter den Speicherbedingungen in der Spinndrüse sind immer zwei dieser Regulationsbereiche so miteinander verknüpft, dass die quervernetzenden Bereiche beider Ketten nicht parallel zueinander liegen können," erläutert Thomas Scheibel die Ergebnisse. "Die Vernetzung ist damit wirkungsvoll unterbunden." Die Eiweißketten lagern sich dann so zusammen, dass polare Bereiche außen sind und die Wasser abweisenden Teile der Kette innen. Dies stellt die gute Löslichkeit in der wässrigen Umgebung sicher.

Gelangen die so geschützten Proteine in den Spinnkanal, finden sie dort eine völlig andere Salzkonzentration und -zusammensetzung vor. Die beiden Salzbrücken der Regulatordomäne werden dadurch instabil und die Kette kann sich entfalten. Durch die Strömung im engen Spinnkanal treten zudem starke Scherkräfte auf. Die langen Eiweißketten werden parallel zueinander ausgerichtet, und nun liegen auch die für die Quervernetzung verantwortlichen Bereiche direkt nebeneinander. Ein stabiler Spinnenseidenfaden entsteht.

"Unsere Ergebnisse haben gezeigt, dass der von uns entdeckte molekulare Schalter am C-terminalen Ende der Eiweißkette sowohl für die sichere Lagerung als auch für den Faserbildungsprozess von entscheidender Bedeutung ist," sagt Franz Hagn. Eine wichtige Grundlage für diese Ergebnisse schuf eine Kooperation der Arbeitsgruppe um Thomas Scheibel mit dem Team von Professor Bausch am Physik-Department der TUM. Dort wurde ein künstlicher Spinnkanal in Mikrosystemtechnologie entwickelt. Aufbauend auf diesen Erkenntnissen arbeiten die Bayreuther Wissenschaftler inzwischen im Rahmen eines BMBF-Verbundprojektes zusammen mit Industrieunternehmen mit Hochdruck an der Entwicklung eines biomimetischen Spinnapparates. Anwendungen gäbe es viele, vom resorbierbaren Nahtmaterial für Operationen bis hin zu technischen Fasern für den Automobilbereich.

Die Arbeiten wurden unterstützt durch Bereitstellung von Messzeit am bayerischen NMRZentrum, durch die Deutsche Forschungsgemeinschaft (DFG), den Exzellenzcluster Center for Intergrated Protein Science Munich (CIPSM) sowie durch das Institute for Advanced Study der TU München, an dem Horst Kessler nach seiner Emeritierung als Senior Fellow arbeitet. Franz Hagn wird gefördert vom Bayerischen Elitenetzwerk CompInt, Mitautor John G. Hardy von der Alexander von Humboldt Stiftung.

Original-Publikation:
A conserved spider silk domain acts as a molecular switch that controls fibre assembly,
Franz Hagn, Lukas Eisoldt, John G. Hardy, Charlotte Vendrely, Murray Coles, Thomas
Scheibel, Horst Kessler
Nature, 13. Mai 2010, DOI: 10.1038/nature08936
Hintergrundinformationen:
NMR-Spektroskopische Untersuchungen von Proteinen und Peptiden, Bayerisches NMRZentrum (Prof. Dr. H. Kessler, TUM-IAS)

http://www.org.chemie.tu-muenchen.de/akkessler/

Forschungsarbeiten mit einer in Mikrosystemtechnik hergestellten künstlichen Spinndrüse (Physik-Department der TUM, Prof. Bausch)

http://www.e22.physik.tu-muenchen.de/bausch

Biomimetische Herstellung von Spinnenseidenproteinen und Seidenfasern
(Prof. Dr. Thomas Scheibel, Univ. Bayreuth, Lehrstuhl für Biomaterialien, ehem. TU München)

http://www.fiberlab.de

Kontaktadressen für weitere Informationen:
Prof. Dr. Thomas Scheibel
Lehrstuhl Biomaterialien
Fakultät für Angewandte Naturwissenschaften
Universität Bayreuth
Universitätsstraße 30
D-95447 Bayreuth
Tel.: +49 (0) 921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de
Prof. Dr. Horst Kessler
Institute for Advanced Study / Department Chemie
Technische Universität München
Lichtenbergstraße 4
D-85748 Garching
Tel.: +49 (0) 89 / 289 13300, Fax: +49 (0) 89 / 289 13210
E-Mail: horst.kessler@ch.tum.de

Christian Wißler | idw
Weitere Informationen:
http://uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen
16.11.2018 | Karlsruher Institut für Technologie

nachricht Emulsionen masschneidern
15.11.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics