Empa-Forschungsteam «designt» therapeutische Beschichtungen mit Silber

Im Rahmen eines EU-Projekts entwickelt das Team Schichten, die Bakterien abtöten, menschliches Gewebe dagegen schonen sollen.

Silberionen töten Bakterien äusserst effizient ab, und im Unterschied zu Antibiotika wirken sie gegen Hunderte von Bakterienstämmen, da sie die Bakterien über mehr als nur einen Mechanismus angreifen können. Deshalb eignet sich Silber geradezu ideal etwa als antibakterieller Zusatz auf Wundauflagen und Implantaten. Das Motto «viel hilft viel» gilt hierbei allerdings nicht, denn in hohen Konzentrationen schädigen Silberionen menschliche Zellen und Gewebe. Gesucht sind also Schichten, die genau das therapeutische Fenster der Silberionen nutzen.

Eine Lösung bieten neuartige nanostrukturierte Polymere mit eingebauten Silber-Nanopartikeln, die Empa-Forschende um Enrico Körner und Dirk Hegemann im Rahmen des EU-Projekts EMBEK1 (Polymer-basierte, multifunktionale, bakterizide Materialien) entwickeln. Dabei untersuchen sie, wie die Bedingungen während der Herstellung den Schichtaufbau beeinflussen, und wie dieser sich wiederum auf die Freisetzung der Silberionen auswirkt. Denn die Freisetzung bestimmt die antibakterielle Wirkung der Schichten. Mit diesen Grundlagen können die Forschenden nun Schichten mit gewünschter Wirkung «designen». Ihre Ergebnisse haben sie vor kurzem in der Fachzeitschrift «Plasma Processes and Polymers» veröffentlicht.

Silber-Nanopartikel fest in der Plasmaschicht einbauen

Die Empa-Forschenden verwenden Hochfrequenzplasmareaktoren, in denen eine Kohlenwasserstoffschicht auf einem Trägermaterial «heranwächst». Als Ausgangsstoffe dienen Gase – Ethylen (C2H4) als Monomer-Baustein und Kohlendioxid (CO2) als reaktives Gas, das die Plasmaschicht strukturiert und zusätzlich für das Zellwachstum erforderliche funktionelle Gruppen einfügt. Der nötige Energieeintrag erfolgt elektrisch über Elektroden, wobei der Prozess nahe Raumtemperatur verbleibt. Um gleichzeitig die Silber-Nanopartikel fest in die Plasmaschicht einzubauen, besteht eine Elektrode aus reinem Silber, an der eine hohe Spannung angelegt wird.

Die Wissenschaftlerinnen und Wissenschaftler haben einzelne Prozess-Parameter variiert, etwa das Verhältnis der beiden Gase und die Eingangsleistung. Dabei zeigte sich, dass das höhere Verhältnis von CO2 zu C2H4 dazu führt, dass die Silberpartikel kleiner sind sowie mehr Silber eingebaut und homogener verteilt wird. Nanoskalige, homogen verteilte Silberpartikel besitzen eine deutlich grössere Oberfläche als beispielsweise eine reine Silberschicht. Eine höhere Eingangsleistung fördert den Einbau, lässt aber die Nanopartikel grösser werden. In kinetischen Versuchen untersuchte das Team schliesslich, welche Schichten wie viel Silberionen freisetzen, und setzten diese Ergebnisse zu parallel dazu durchgeführten Bakterien- und Zelltests in Beziehung. Damit konnten die Modalitäten bestimmt werden, unter denen die Silber-Nanokompositschichten sowohl antibakterielle als auch zytokompatible, also zellfreundliche Eigenschaften aufweisen.

Diese Erkenntnisse können eingesetzt werden, um den Herstellungsprozess vom Labormassstab in die hauseigene Pilotanlage zu überführen, das heisst in die Vorstufe für eine industrielle Produktion massgeschneiderter antibakterieller Beschichtungen. Zudem versuchen die Forschenden, Gradienten in den Schichten anzulegen und so die zeitliche Freisetzung der Silberionen noch genauer zu steuern. Dabei kann eine polymere Deckschicht helfen, dass menschliche Zellen optimal auf der antibakteriell wirksamen Schicht wachsen können.

Literaturhinweis
«Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties», E. Körner, M. Aguirre, A. Ritter, G. Fortunato, J. Rühe, D. Hegemann, Plasma Processes and Polymers, online publiziert am 22. Juni 2010 (DOI: 10.1002/ppap.200900163)
Projekthinweis
Diese Arbeit ist Teil des EU-Projekts Embek1 «Development and analysis of polymer based multifunctional bactericidal materials»; Förderung #211436 im 7. Rahmenprogramm, koordiniert durch das Max-Planck-Institut für Polymerforschung Mainz.

Media Contact

Beatrice Huber idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer