Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrostatisches Materialdesign: TU Graz zeigt fundamental neuen Ansatz

11.05.2017

Forschende des Instituts für Festkörperphysik stellen in Advanced Materials einen radikal neuen Ansatz zur gezielten Gestaltung optischer und elektronischer Eigenschaften von Materialien vor.

Herkömmlicherweise wird computergestütztes Materialdesign dazu genutzt, um bereits existierende Materialien zu verbessern und weiterzuentwickeln. Simulationen erlauben einen tiefen Einblick in die quantenmechanischen Effekte, die letztendlich die Materialeigenschaften bestimmen.


3D Absicht von manipulierter energetischer Landschaft innerhalb eines ausgedehnten Materials.

© TU Graz


Egbert Zojer und Viktoria Obersteiner, die Hauptautoren des in Advanced Materials erschienenen paper.

© TU Graz

Egbert Zojer geht einen Schritt weiter: Mit seinem Team vom Institut für Festkörperphysik der TU Graz nutzt er Computersimulationen, um ein gänzlich neues Konzept zur Kontrolle elektronischer Materialeigenschaften vorzuschlagen.

Vermeintlich störende Einflüsse, die sich aus der regelmäßigen Anordnung polarer Elemente ergeben, nämlich sogenannte kollektive elektrostatische Effekte, nutzt die Gruppe zur gezielten Manipulation von Materialeigenschaften. Dass der radikal neue Ansatz auch für dreidimensionale Materialien funktioniert, demonstriert das Grazer Team in Advanced Materials, dem laut Google Scholar international wichtigsten Journal im Bereich Materialforschung.

Manipulation der energetischen Materiallandschaft

„Der grundlegende Ansatz unserer Forschung zum elektrostatischen Design von Materialien ist es, die elektronischen Eigenschaften insbesondere von halbleitenden Materialien so zu modifizieren, dass kontrolliert Energieniveaus verschoben werden können. Dabei wenden wir Effekte an, die sich aus der periodischen Anordnung von dipolaren Gruppen ergeben. Wir versuchen also nicht, Wege zu finden, diese gerade an Grenzflächen unvermeidlichen Effekte zu umgehen, sondern nutzen sie ganz gezielt für unsere Zwecke aus“, erklärt Egbert Zojer.

Schon länger widmet sich eine Gruppe um Zojer diesem Forschungsgebiet. Der erste Schritt war das elektrostatische Design von molekularen Monolagen, etwa auf Goldelektroden. Experimente haben gezeigt, dass die vorhergesagten Energieverschiebungen innerhalb der Schichten tatsächlich auftreten und sich der Ladungstransport durch die Monolagen gezielt manipulieren lässt.

Auch die elektronischen Eigenschaften zweidimensionaler Materialien, wie beispielsweise Graphen, lassen sich über kollektive elektrostatische Effekte kontrollieren. In der Publikation in Advanced Materials demonstrieren die Dissertantin Veronika Obersteiner, Egbert Zojer und weitere Kolleginnen und Kollegen aus der Arbeitsgruppe das volle Potential des Konzepts, indem sie es auf dreidimensionale Materialien erweitern.

„Für das Beispiel dreidimensionaler kovalenter organischer Netzwerke zeigen wir, wie man mittels kollektiver elektrostatischer Effekte die energetische Landschaft innerhalb eines ausgedehnten Materials so manipuliert, dass räumlich begrenzte Pfade für Elektronen und Löcher entstehen. So kann man beispielsweise gezielt Ladungsträger trennen und die elektronischen Materialeigenschaft quasi nach Lust und Laune gestalten.“, so Zojer.

Das vorliegende Konzept kann insbesondere für Solarzellen interessant sein. In klassischen organischen Solarzellen nutzt man chemisch unterschiedliche Elemente, so genannte Donatoren und Akzeptoren, zum Auftrennen der durch den Absorptionsprozess entstandenen Elektron-Loch Paare. Im hier vorgeschlagenen Zugang funktioniert die dazu nötige lokale Verschiebung der Energieniveaus aufgrund periodisch eingebauter polarer Gruppen.

Die halbleitenden Bereiche, auf die die Elektronen bzw. die Löcher verschoben werden, sind dabei chemisch ident. „Wir können so die Energieniveaus durch Variation der Dipoldichte effizient und quasi kontinuierlich einstellen. Diese Arbeit ist der bisherige Höhepunkt unserer intensiven Forschung am elektrostatischen Materialdesign“, sagt Zojer.

Mit elektrostatischem Design in 3D-Systemen können auch komplexe Quantenstrukturen realisiert werden, wie Quantenschachbretter oder Quantenkaskaden. „Nur die Phantasie der Materialdesigner setzt unserem neuen Konzept Grenzen“, betonen Zojer und Obersteiner unisono.

Zur Originalpublikation:
Electrostatic Design of 3D Covalent Organic Networks
Advanced Materials | DOI: 10.1002/adma.201700888
http://onlinelibrary.wiley.com/doi/10.1002/adma.201700888/full
Weiteres Bildmaterial verfügbar unter http://bit.ly/2q5FyCh

Dieses Forschungsprojekt ist im Field of Expertise „Advanced Materials Science“ verankert, einem von fünf strategischen Schwerpunktfeldern der TU Graz.

Kontakt:
Egbert ZOJER
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institut für Festkörperphysik
Tel.: +43 316 873 8475
E-Mail: egbert.zojer@tugraz.at

Mag. Susanne Eigner | Technische Universität Graz

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Hygienische und virenfreie Oberflächen: Smartphones schnell und sicher mit Licht desinfizieren
06.04.2020 | Institutsteil Angewandte Systemtechnik (AST) des Fraunhofer IOSB

nachricht Innovative Materialien und Bauelemente für die Terahertz-Elektronik
02.04.2020 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics