Elektromobilität: Neues Werkstoffkonzept für das Batteriegehäuse spart Gewicht und gibt Sicherheit

Konzeptstudie einer leichtbauoptimierten Fahrzeugkarosserie der C-Klasse mit integriertem Energiespeichersystem<br>(c) Fraunhofer LBF<br>

Eine der großen Herausforderungen hin zur Elektromobilität ist die Batterie. Noch ist die Reichweite gering und das Gewicht hoch. Aufgrund der niedrigen Energiedichte werden die Batteriepakete auch in den nächsten Jahren noch groß und schwer sein, selbst wenn bei den Li-Ionen-Zellen die erhofften weiteren Fortschritte erzielt werden. Neue Werkstoffkonzepte zur Gewichtsreduktion und Leichtbaudesign auf höchstem Sicherheitsniveau sind deshalb gefragt.

Das Ziel des von der EU geförderten Projekts »Smart and Safe Integration of Batteries in Electric Vehicles – SmartBatt« bestand darin, ein multifunktionales, leichtes und sicheres Konzept für ein Energiespeichersystem zu erarbeiten und zu erproben, welches vollständig in die Fahrzeugstruktur integriert sein sollte.

Das Batteriegehäuse ist hier kein separates Anbauteil mehr, sondern eine integrale tragende Strukturkomponente der Fahrzeugkarosserie, z. B. des Fahrzeugbodens. Als Basis für die Fahrzeugkarosserie diente das SuperLIGHT-CAR (SLC), eine im 6. Rahmenprogramm der EU geförderte Konzeptstudie einer leichtbauoptimierten Fahrzeugkarosserie der C-Klasse.

Die größten Herausforderungen bei dieser Integrationsaufgabe lagen darin, eine Kombination aus Leichtbau-Design mit einem hohen Sicherheitsniveau gegenüber den verschiedensten Gefahren- und Unfallszenarios und mit einem intelligenten Design der Schnittstellen zu den übrigen Fahrzeugsystemen zu finden.
Um diesen Herausforderungen zu begegnen wurde ein europäisches Konsortium aus vier Industriefirmen und fünf Forschungseinrichtungen gebildet. Die Kompetenzen dieser neun Partner umfassen unter anderem die Fahrzeugtechnik, Elektronik, Batterien, Konstruktion, Leichtbau, Werkstoffe, sowie Tests und Erprobungen.

Neue Werkstoffkonzepte zur Gewichtsreduktion

Das Konsortium des SmartBatt-Projekts stellte sich die ehrgeizige Aufgabe, durch ein alternatives Konzept für das Gehäuse das Gesamtgewicht des Batterie-Pakets um 10-15 Prozent zu verringern.
Ein wesentlicher Punkt des Projekts war die Erarbeitung innovativer Werkstoffkonzepte, mithilfe derer die gewünschte Gewichtsreduzierung erreichbar war. Im Rahmen einer Nutzwertanalyse wurden neben Aluminium und Stahl auch verschiedene weitere Werkstofflösungen betrachtet. Als Ergebnis dieser Evaluierung wurde als Werkstoff für die unteren Wannen des Batterie-Pakets das APM Hybridschaum-Sandwich ausgewählt. Dieses Material ist dadurch gekennzeichnet, dass sich zwischen zwei Decklagen aus konventionellem Aluminium eine Kernlage aus Aluminiumschaumkugeln befindet, welche in eine Matrix aus geschäumtem Epoxidharzklebstoff eingebettet sind. Die Besonderheit des Materialansatzes liegt in der Fertigung, die eine gezielte, lokal begrenzte Ausbildung der Sandwichstruktur erlaubt.

Das Material bietet eine hohe Biegesteifigkeit bei geringem Gewicht: ein Quadratmeter des APM-Hybridschaumsandwiches hat eine Biegesteifigkeit von 3,54•108 Nmm2 und eine Masse von 4,72 Kilogramm. Demgegenüber besitzt ein konventionelles Aluminiumblech von 3,3 mm Dicke nur eine Biegesteifigkeit von 2,1•108 Nmm2 (41 Prozent weniger) und eine Masse von 8,91 Kilogramm (89 Prozent mehr). Aufgrund seiner Dicke und des Energieabsorptionsvermögens der Aluminiumschaumkernlage weist die Sandwich-Lösung neben einem guten Steinschlagschutz auch Vorteile im Brandfall und hinsichtlich der Vibrationsdämpfung im Normalbetrieb auf.

Die Projektergebnisse: Mit Sicherheit leichter

Im Vergleich zu State-of-the-Art Systemen ist es mit einem integrativen Ansatz und Materialinnovationen gelungen, das Gewicht des Gehäuses zu halbieren und damit das gesamte Batteriesystem um 20 Prozent leichter zu machen. Wesentlicher Bestandteil der Gesamtlösung war die Entwicklung und der Einsatz geformter Blechstrukturen, welche in definierten Bereichen als Sandwich mit Polymer-Aluminium-Hybridschaum-Kern ausgeführt waren.

Im Rahmen des Projekts wurde der Gesamtdemonstrator »Battery-Pack« umfangreichen Funktions- und Belastungstests unterworfen, z.B. Wasser und Staub-Penetration-, Explosions-, EMV-, Crash- und Brandtests. Die Crashsimulationen und Labortests in der Entwicklungs- und Validierungsphase zeigten, dass die smarte Integration in das Chassis des SuperLIGHT-CAR entscheidend dazu beiträgt, die Torsionssteifigkeit, Biegefestigkeit und damit auch die Crashsicherheit des ganzen Fahrzeugrahmens zu verbessern.
Auftraggeber:
European Union; Contract No. SCPO-GA-2010-266074

Projektpartner:
AIT Mobility, Österreich; AIT LKR, Österreich; Axeon, Großbritannien; Fraunhofer, Deutschland; Impact Design, Polen; Ricardo, Großbritannien; SP, Schweden; TU Graz, Österreich; VOLKSWAGEN, Deutschland

Media Contact

Martina Ohle Fraunhofer-Institut

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer