Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzigartige High-Tech-Anlage zur Herstellung von Nanofasern

12.05.2015

Keylab der TechnologieAllianzOberfranken (TAO) bietet neue Perspektiven für Forschung und Entwicklung

Nanofasern gelten heute weltweit als ein technologisch hochinteressantes Material mit einem breiten Spektrum potenzieller Anwendungen. Um die polymerwissenschaftlichen Grundlagen dieser Anwendungen aufzuklären und innovative Einsatzmöglichkeiten zu erproben, bedarf es hochwertiger Forschungstechnologien.

Am Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Prof. Dr. Thomas Scheibel ist jetzt eine neu entwickelte Zentrifugen-Elektrospinnanlage in Betrieb gegangen. Sie erlaubt es mit einer bisher einzigartigen Präzision, feinste Nanofasern über lange Zeiträume hinweg in großen Mengen zu spinnen und punktgenau auf verschiedenste Träger-Materialien aufzutragen.

Die Anlage bildet den Kern eines „KeyLabs“ der TechnologieAllianzOberfranken (TAO), in dem sich die Universitäten Bayreuth und Bamberg mit den Hochschulen für angewandte Wissenschaften in Coburg und Hof zusammengeschlossen haben. Prof. Dr. Frank Ficker, Vizepräsident der Hochschule Hof für die Bereiche Forschung und Entwicklung, hat gemeinsam mit Prof. Scheibel den Aufbau der neuen Anlage initiiert.

„Wir freuen uns schon darauf, diese spannenden Forschungspotenziale gemeinsam mit unserem wissenschaftlichen Nachwuchs zu nutzen, um neue Ideen in der Faserforschung umzusetzen oder im Rahmen von Industriepartnerschaften an der Entwicklung neuer Funktionsfasern zu arbeiten“, so Prof. Scheibel. „Uns steht jetzt für die Faserforschung eine einzigartige Technologie zur Verfügung, wie es sie in ihrer Art nirgendwo sonst in Deutschland gibt. Der Firma Dienes, die die Anlage sehr sorgfältig und aufgrund langjähriger Erfahrungen entsprechend unseren Wünschen realisiert hat, danken wir ausdrücklich für die hervorragende Kooperation.“

Die Anlage wurde von der Firma Dienes in Darmstadt eigens für das neue KeyLab konzipiert, das sich derzeit noch an der Ingenieurfakultät der Universität Bayreuth befindet und ab 2017 im TAO-Forschungsgebäude auf dem Campus angesiedelt sein wird. Die technologische Pointe besteht darin, dass in der Anlage zwei Komponenten, die für sich bereits bekannt sind, zusammengeführt und miteinander verzahnt werden:

• Eine Zentrifuge, die üblicherweise bei der Produktion und beim Auftragen feinster Lack-Tropfen zum Einsatz kommt, wurde umgerüstet – und zwar so, dass mit ihr aus einer Polymerlösung, bedingt durch eine hohe Zentrifugalkraft, winzige Faseransätze (Koni) gebildet werden.

• Unterhalb des Zentrifugenkopfes befindet sich ein starkes elektromagnetisches Feld. Dieses bewirkt, dass die Fäden beschleunigt nach unten in Richtung der Gegenelektrode gezogen werden. Ein Trägermaterial befindet sich auf dieser Gegenelektrode, um die Weiterverarbeitung der nanometerdünnen Fasern zu erleichtern, die sich auf dem Träger als Vlies abscheiden. So verbindet die Anlage die Zentrifugentechnologie mit einem Faserspinn-Know-how, das dem „Elektrospinnen“ zugrunde liegt.

Derzeit arbeiten die Forschungspartner in Bayreuth und Hof gemeinsam u.a. an der Entwicklung von Feinstaubfiltern auf Basis von Spinnenseiden-Nanovliesen. Sie haben eine weit bessere Luftdurchlässigkeit als herkömmliche Filter. Mit klassischen Elektrospinn-Methoden konnten enorme Vorteile der elektrogesponnenen Spinnenseidenvliese in der Filtertechnik gezeigt werden.

Allerdings stellte sich heraus, dass die eingesetzten Methoden für eine Massenproduktion nicht uneingeschränkt tauglich sind, was sich durch die Etablierung der neuen Methode ändert. So entstand die Initiative, für das KeyLab der Universität Bayreuth diese leistungsstarke Anlage zu bauen.

Grundsätzlich ist die Zahl der innovativen Anwendungen, vor allem im Bereich der Filtertechnologie nahezu unbegrenzt. Und auch für die Herstellung von Implantaten in der regenerativen Medizin, beispielsweise die Züchtung von Nervenzellen, zeigen sich Verbesserungsansätze. Derzeit arbeitet die Anlage noch mit einer bioverträglichen Kunststofflösung aus Poly-Ethylen-Oxid oder mit Polymilchsäure.

Aber schon bald – so ist es geplant – wird sie mit einer Lösung aus Spinnenseidenproteinen in Betrieb gehen. Dann könnten die im TAO-KeyLab produzierten Nanofasern eine Kombination aus exzellenten mechanischen Eigenschaften, Bioverträglichkeit und Bioabbaubarkeit aufweisen, an die keine anderen Fasern heranreichen.

Kontakt:
Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer

19.02.2020 | Informationstechnologie

Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen

19.02.2020 | Biowissenschaften Chemie

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics