Ein roter Faden durchs Labyrinth der Nanomaterialien

Eisenoxid-Nanopartikel auf der Oberfläche einer Zelle Empa

Der Einsatz von Nanomaterialien kann zu neuen oder entscheidend verbesserten Produkteigenschaften führen. Die Industrie möchte die spezifischen Eigenschaften von Nanomaterialien für wettbewerbsstarke Produkte nutzen, aber auch Risiken für Mensch und Umwelt vermeiden.

Viele Fragen zu Nutzen und Risiken von Nanomaterialien sind noch offen, die Europäische Gesetzgebung in diesem Bereich ist anspruchsvoll. Die Empa hat im Rahmen des EU-Projektes «LICARA» zusammen mit der holländischen Forschungsinstitution TNO, dem Nano-Cluster-Bodensee und sechs weiteren Partnern aus der Industrie einen Leitfaden herausgegeben, der unter anderem Antworten auf folgende Fragen liefert:
• Wo und wie können Nanomaterialien nützlich sein?
• Was sind nanospezifische Risiken für Mensch und Umwelt?
• Welche gesetzlichen Grundlagen gibt es?
• Wie nachhaltig sind Nanoprodukte?

Ergänzend zum Leitfaden steht ein Excel-Tool, der «LICARA nanoSCAN» zur Verfügung, um Nutzen-Risiko-Abwägungen mit Nanomaterialien semi-quantitativ zu illustrieren. Der Leitfaden steht zum Download auf http://www.empa.ch/licara  bereit; dort befindet sich auch der Link zum «LICARA nanoSCAN».

In sieben einfachen Schritten zu einer ersten Entscheidungsgrundlage

Im «LICARA»-Leitfaden werden zunächst die Begriffe Nanopartikel, Nanomaterial und Nanoprodukt erläutert. Denn: Nicht alles, was mit «Nano» bezeichnet wird, enthält Nanopartikel. Daneben wird die rechtliche Situation erklärt. Werden Nanopartikel in Produkten in den Bereichen Kosmetik, Nahrungsmittel und Pflanzenschutzmitteln verwendet, sind die strengen Vorschriften zur Registrierung und Deklaration unbedingt zu beachten.

Auch bei Produkten aus anderen Branchen gibt es Registrierungsvorschriften. Die Schritte drei und vier widmen sich den Nutzenpotenziale der Nanomaterialien. Der fünfte Schritt zeigt, wie durch entsprechendes Produktedesign Sicherheit und Qualität der Produkte entlang ihres Lebenszyklus verbessert werden können. Schritt sechs umfasst den Stand der Forschung zu möglichen Risiken.

Im letzten Schritt führt der Leitfaden potenzielle Nutzer schliesslich auf systematische Weise an eine erste Entscheidungsgrundlage heran, ob und mit welchen Nanomaterialien erfolgreich innovative Produkte entwickelt werden können.

Diese Entscheidungsgrundlage kann auch genutzt werden, um mit Kunden, Lieferanten und Behörden effizient über das Produkt zu kommunizieren. Für eine weitere Vertiefung bietet sich im Anschluss der LICARA NanoSCAN an.

Leitfaden für Nanotextilien
Bereits 2011 hat die Empa zusammen mit dem Textilverband Schweiz TVS den Leitfaden «Nano Textiles» für den sicheren Zu- und Umgang mit Nanotechnik in der Textil- und Bekleidungsindustrie herausgegeben. Die Broschüre geht auf spezielle Fragen aus der Textilproduktion ein und steht unter http://www.empa.ch/nanosafetextiles  zum Download zur Verfügung.

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/153676/—/l=1

Media Contact

Rainer Klose EMPA

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer