Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dünnschicht-Solarzellen: Wie Defekte in CIGSe-Zellen entstehen und verschwinden

22.04.2016

Kupferanteil spielt entscheidende Rolle

Eine internationale Kollaboration aus deutschen, israelischen und britischen Teams hat die Abscheidung von einzelnen Chalkopyrit-Dünnschichten untersucht. An der Röntgenquelle BESSY II des Helmholtz-Zentrums Berlin konnten sie beobachten, wann sich während der Deposition bestimmte Defekte bilden und unter welchen Umständen sie ausheilen. Die Ergebnisse geben Hinweise für die Optimierung der Herstellungsprozesse und sind nun in „Energy & Environmental Science“ publiziert.


Die Messergebnisse (Photonenenergie vs. Zeit) belegen Defekte (unten), die nach etwa 120 Minuten verschwinden. Dies entspricht dem Übergang von der kupferarmen Phase in die kupferreiche Phase.

HZB

Unter den polykristallinen Dünnschicht-Solarzelltypen erreichen CIGSe-Solarzellen die höchsten Wirkungsgrade. CIGSe steht für Kupfer, Indium, Gallium und Selen, die vier Elemente werden über Dampfphasen zusammen abgeschieden, so dass sie in Form von winzigen Chalkopyrit-Kristallen auf einem Substrat eine sehr dünne Schicht bilden.

Dies ist ein überaus komplexer Prozess, der von vielen Parametern gesteuert wird. Daher erreichen CIGSe-Module in industrieüblichen Formaten noch nicht die Rekordwirkungsgrade, die bereits im Labormaßstab demonstriert werden. Eine Ursache: im Verlauf der Herstellung können sich Defekte ausbilden, die den Wirkungsgrad reduzieren.

Eine Kollaboration aus deutschen, israelischen und britischen Teams hat nun eingehend untersucht, wie der Herstellungsweg die Qualität der Mikrostruktur beeinflusst. An der Röntgenquelle BESSY II konnten sie erstmals mit in situ Röntgendiffraktion und Fluoreszenzanalyse beobachten, wann sich während der Deposition Defekte bilden und unter welchen Umständen sie ausheilen.

Zusätzliches Kupfer hilft beim Ausheilen der Defekte

Das Abscheiden von dünnen CIGSe-Filmen ist ein komplexer Prozess: Zunächst werden Indium, Gallium und Selen auf dem Substrat deponiert. Im zweiten Schritt folgt die Deposition von Kupfer- und Selenatomen, die in die In-Ga-Se-Schicht einwandern. Dort entstehen winzige CIGSe-Kristallite mit Chalkopyrit-sStruktur. Der Kupferanteil erreicht erst im Lauf des zweiten Schritts das richtige Maß. Die „kupferarme“ Phase davor ist durch zahlreiche Defekte innerhalb der Kristallite gekennzeichnet. Durch die Zugabe von Kupfer und Selen verschwinden diese Defekte zunehmend.

Wird auch nach dem Erreichen der „richtigen Stöchiometrie“ noch Kupfer und Selen zugegeben, dann passen diese Elemente nicht mehr in die vorhandenen Kristallmatrizen hinein und lagern sich in und auf der polykristallinen CIGSe-Schicht als "Körner" ab. Eigentlich ist dies lästig, denn die Körner müssen im Anschluss wieder aufwändig entfernt werden. Doch offenbar haben sie eine wichtige Funktion für das fast vollständige Verschwinden der Defekte. Dies zeigt nun die vorliegende Arbeit.

Strukturen und Elemente in Echtzeit während des Aufwachsens analysiert

Dr. Roland Mainz und seine Kollegen vom HZB konnten an der EDDI-Beamline von BESSY II mit Röntgendiffraktion die Strukturveränderungen während der Deposition beobachten. Und zwar in Echtzeit. Dabei analysierten sie mit Röntgenfluoreszenzanalyse die elementare Zusammensetzung der entstandenen Dünnschicht. Die gleichzeitige Beobachtung mit zwei Methoden ermöglichte ihnen einen neuen Einblick:

„Die Vernichtung der Defekte erfolgt sehr schnell, sobald sich Kupferselen-Körner an der Oberfläche des CIGSe-Filmes ablagern und wir in die kupferreiche Phase eintreten. Bisher haben wir die kupferreiche Phase nur als wichtig für das Wachsen der Körner verstanden, nun wissen wir, dass sie auch eine große Rolle beim Abbau der Defekte spielt“, erklärt Roland Mainz.

Abscheidungsprozesse für hochqualitative CIGSe-Filme verbessern

Helena Stange, Ko-Autorin der Studie, hat den Einfluss der verschiedenen Defekttypen auf die Diffraktionssignale simuliert. Die In-Situ-Beobachtungen passen sehr gut zu den Simulationen und zu den Ergebnissen, die aus den unterschiedlichen bildgebenden Verfahren entstanden sind, mit denen Teams am Max-Planck-Institut für Festkörperforschung in Stuttgart, am SuperSTEM Lab in Daresbury, England oder am Racah Institut, Jerusalem, die Proben in verschiedenen Stadien der Deposition untersucht hatten.

Temperatur eher unkritisch

Ein weiteres wichtiges Ergebnis ist, dass die Temperatur während der Deposition ein verhältnismäßig unkritischer Parameter für den Defektabbau ist: Ob der Vorgang bei 400 Grad Celsius oder 530 Grad stattfindet, ist unerheblich, sobald die Schicht kupferreich wird. Auch diese Einsicht hilft dabei, Verfahren für die großflächige Deposition zu optimieren: anstatt viel Aufwand auf eine möglichst homogene Temperatur über die gesamte Fläche zu verwenden, sollte man besser andere Parameter perfektionieren.

Die Ergebnisse sind in Energy & Environmental ScienceEnergy & Environmental Science publiziert: “Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells”

DOI: 10.1039/C6EE00402D

Die Kooperation läuft im Rahmen des Helmholtz-Virtuellen Instituts „Microstructures control for thin film solarcells“, das von 2012 bis 2018 gefördert wird.

Kontakt:

Dr. Roland Mainz
E-Mail: roland.mainz@helmholtz-berlin.de

Pressestelle HZB
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de
Fon: +49 (0)30 8062-43733

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14437&sprache=de&ty...
http://pubs.rsc.org/en/Content/ArticleLanding/2016/EE/C6EE00402D#!divAbstract

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics