Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Digitalisierung des Entwicklungsprozesses von Lenkergriffen - Mehr Komfort beim Radfahren

01.04.2019

Radfahren ist gesund, es hält beweglich, trainiert die Gelenke und stärkt den Rücken. Großen Wert auf Komfort legt die Ergon International GmbH, Hersteller von ergonomischem Fahrradzubehör. Eine wichtige Rolle für den Komfort spielen die Lenkergriffe. Forscherinnen und Forscher des Fraunhofer-Instituts für Betriebsfestigkeit und Zuverlässigkeit LBF arbeiten gemeinsam mit dem Koblenzer Unternehmen an Methoden und Werkzeugen, um den Entwicklungsprozess von ergonomischen Fahrradgriffen zu beschleunigen und zu digitaliseren.

Der Frühling steht vor der Tür, die Sonne scheint, viele Sportbegeisterte holen ihre Fahrräder aus dem Keller und fahren hinaus in die Natur. Doch je länger die Tour, desto unangenehmer wird es: Der Nacken wird steif, die Finger fühlen sich taub an, die Knie schmerzen. Studien zufolge haben 50 bis 90 Prozent aller Radfahrerinnen und Radfahrer solche Beschwerden. Der Koblenzer Hersteller von Fahrradzubehör Ergon International GmbH kennt diese Probleme.


Numerisch berechnete Druckverteilung.

© Fraunhofer LBF


Ergonomischer Fahrradgriff.

Ergon International GmbH

Um das Radeln so bequem wie möglich zu gestalten und Schmerzen zu vermeiden, entwickelt der Mittelständler ergonomische Fahrradgriffe. Bei dem Entwicklungsprozess erhält das Unternehmen Unterstützung vom Fraunhofer LBF. Als Teil des Mittelstand 4.0-Kompetenzzentrums Darmstadt (siehe Kasten) bringen die Forscherinnen und Forscher des LBF ihre Expertise in den Entwicklungsprozess der Griffe ein.

Virtuelles, numerisches Modell berücksichtigt Parameter wie Druckverteilung
»Griffverbindungen werden heute oft erfahrungsbasiert unter der Beteiligung von Ergonomiespezialisten, Designern und Materialspezialisten konzipiert. Dabei entstehen erste Prototypen, die von Testfahrern getestet und bewertet werden.

Die Rückmeldungen der Tester sind subjektiv und die Ergebnisse oft schwer reproduzierbar«, sagt Jan Hansmann, Wissenschaftler am Fraunhofer LBF. Um die bisher langwierigen Testphasen abzukürzen, den Entwicklungsprozess effektiver zu gestalten und Materialkosten einzusparen, haben die Projektpartner in enger Zusammenarbeit eine Methode konzipiert, um eine erste Eigenschaftsabsicherung von Fahrradgriffen mittels numerischer Simulation zu ermöglichen.

Mithilfe einer Finite-Elemente-Software erstellen Hansmann und seine Kollegen ein virtuelles, numerisches Modell des Griffs und der Hand, das verschiedene Parameter wie Material, Materialzusammensetzung, Druckverteilung, Dämpfung, Handgeometrie und deren Bestandteile wie Muskel, Haut, Knochen und Gewebe berücksichtigt. Ziel ist es, Griffe zu produzieren, die man nicht spürt, die das Handgelenk entlasten und die auf langen Fahrten kleine Schläge dämpfen sowie Vibrationen abfedern.

»Wenn man Prototypen mit unterschiedlichen Materialien ausprobiert, muss man demzufolge vorab verschiedene Materialien herstellen lassen und den Spritzgussprozess immer wieder durchlaufen. Durch die Simulation kann man sich einige Iterationen sparen und muss beispielsweise anstelle von sechs verschiedene Prototypenmodellen nur noch zwei produzieren«, erläutert Hansmann einen Vorteil der Digitalisierung. »Wir sind in der Lage, erste mechanische Eigenschaften zu bestimmen, noch bevor ein realer Prototyp produziert wird.« Ein weiterer Benefit: Die Methode lässt sich auch auf anderes Zubehör übertragen wie etwa den Fahrradsattel.

Um verschiedene Griffe bewerten zu können, hat das Forscherteam darüber hinaus Tests durchgeführt, deren Ergebnisse ebenfalls in der Simulation berücksichtigt werden: Mithilfe von Vibrationstests im Labor prüfen Hansmann und seine Kollegen wie sich Vibrationen – dies gilt vor allem für Fahrten mit Mountainbikes oder Rennrädern – auf die Ermüdung der Unterarme auswirken. Die hierfür erforderlichen Beschleunigungs- und Kraftmesswerte wurden per Elektromyographie (EMG) ermittelt.

Weniger Prototypen erforderlich dank Simulation
Durch die neue Methode ist eine erste, schnelle Einschätzung von Griffen realisierbar, ohne Prototypen herstellen zu müssen. Testfahrten sind zwar nach wie vor erforderlich, aber die Anzahl der erforderlichen Prototypenvarianten lässt sich reduzieren.

Darüber hinaus ist man in punkto Tests nicht von Jahreszeiten abhängig, auch die Anzahl der Probanden lässt sich reduzieren. Die Folge ist ein schnellerer Entwicklungsprozess. Zudem werden Werkzeug- und Fertigungskosten in der Entwicklungsphase eingespart. »Digitalisierung ist sehr hilfreich für uns, deswegen möchten wir hier weiterhin Know-how aufbauen. Die Entwicklung der Fahrradgriffe wird möglicherweise die erste von vielen mit digitaler Unterstützung sein«, betont Franc Arnold, CEO der Ergon International GmbH den Erfolg der Zusammenarbeit.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2019/april/mehr-komfort-...

Anke Zeidler-Finsel | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Material mit magnetischem Formgedächtnis
04.06.2019 | Paul Scherrer Institut (PSI)

nachricht Weltraumschrott verringern: HZG-Wissenschaftler helfen beim Sauberhalten
30.05.2019 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Saubere Lunge dank Laserprozessabsaugung

18.06.2019 | Maschinenbau

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungsnachrichten

Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics