Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamant als Baustoff für optische Schaltkreise

10.04.2013
Der Einsatz von Licht zur Informationsverarbeitung öffnet viele Möglichkeiten.

Um die Photonen des Lichts jedoch gezielt in Schaltkreisen und Sensoren einzusetzen, werden Materialien benötigt, die die richtigen optischen und mechanischen Eigenschaften mitbringen.


Zwei parallele freistehende Wellenleiter aus polykristallinem Diamant dienen als mechanische Resonatoren. In ihnen breiten sich optische Felder aus (rot/blau). Grafik: KIT/CFN/Pernice

Forscher am Karlsruher Institut für Technologie (KIT) haben nun erstmals polykristallinen Diamant für einen optischen Schaltkreis eingesetzt und ihre Ergebnisse bei Nature Communications online veröffentlicht. (DOI: 10.1038/ncomms2710)

„Diamant hat mehrere Eigenschaften, die es uns ermöglichen, alle Komponenten eines einsatzbereiten optomechanischen Schaltkreises sozusagen aus einem Guss zu realisieren“, sagt Wolfram Pernice Gruppenleiter am KIT. „Die so hergestellten Elemente - die Resonatoren, Schaltkreise und der Wafer - überzeugen durch ihre hohe Qualität.“

Diamant ist durchsichtig, also optisch transparent für Lichtwellen aus einem weiten Wellenlängenbereich, der auch das sichtbare Spektrum zwischen 400 und 750 Nanometer Wellenlänge abdeckt. Damit lässt er sich gezielt in optomechanischen Schaltungen für Anwendungen in der Sensorik, der Fluoreszenz-Bildgebung oder für neuartige optische Messmethoden in der Biologie einsetzen. Sein hoher Brechungsindex und das Fehlen von Absorption sorgen für einen effizienten Transport der Photonen. Darüber hinaus macht ihn sein hohes Elastizitätsmodul zu einem robusten Werkstoff, der sich gleichzeitig hervorragend an raue Oberflächen anpasst und dabei noch die Eigenschaft hat, Wärme schnell wieder abzugeben.

Bislang wurden optische Schaltkreise nur mit einkristallinen Diamantsubstraten realisiert. Das sind hochreine Kristalle, bei denen unter einer Milliarden Diamant-Atomen höchstens ein Fremdatom vorkommt. Ihre Herstellung ist auf kleine Größen begrenzt und erfordert ein anspruchsvolles Verfahren, um sie auf Isolatoren, die für einen Schaltkreis benötigt werden, aufzubringen.
Die Forschungsgruppe von Pernice nutzte für die Realisierung ihrer optomechanischen Schaltkreise auf einem Wafer erstmals polykristallinen Diamant. Dieser weist zwar unregelmäßigere Kristallstrukturen auf, verhält sich aber insgesamt robuster und lässt sich entsprechend einfacher auf Isolatoren aufbringen. Dadurch kann man ihn großflächiger als den einkristallinen Diamanten verarbeiten. Er leitet die Photonen nahezu genauso effizient weiter wie einkristallines Diamantsubstrat und ist für den industriellen Einsatz geeignet. Das neue Material hat die Realisierung eines optomechanischen Bauteiles aus einem Guss erst ermöglicht.

Die Optomechanik verbindet die integrierte Optik mit mechanischen Elementen - im Fall des optomechanischen Schaltkreises der Gruppe Pernice mit nanomechanischen Resonatoren. Diese schwingfähigen Systeme reagieren auf eine bestimmte Frequenz. Tritt diese Frequenz auf, schwingt der Resonator mit. „Nanomechanische Resonatoren gehören zu den empfindlichsten Sensoren überhaupt und werden für eine Vielzahl von Präzisionsmessungen eingesetzt. Allerdings ist es extrem schwierig, solche kleinsten Bauteile mit etablierten Messmethoden anzusprechen“, erklärt Patrik Rath, Erstautor der Studie. „In unserer Arbeit haben wir die Tatsache genutzt, dass heute nanophotonische Bauelemente größengleich mit nanoskaligen mechanischen Resonatoren angefertigt werden können. Reagiert der Resonator, werden entsprechende optische Signale direkt an den Schaltkreis weitergegeben.“ Diese Entwicklung ermöglichte die Kombination dieser beiden ehemals getrennten Forschungsfeldern und somit die Realisierung von sehr effizienten optisch-mechanischen Schaltungen.

Die integrierte Optik funktioniert ähnlich wie integrierte Schaltkreise. Optische Schaltkreise geben Information über Photonen weiter, in den uns vertrauten elektronischen Schaltkreisen geschieht dies über Elektronen. Ziel der integrierten Optik ist es, alle zum Aufbau eines optischen Kommunikationsprozesses erforderlichen Komponenten in einem integrierten optischen Schaltkreis unterzubringen und so den Umweg über elektrische Signale zu vermeiden. In beiden Fällen werden die Schaltkreise auf weniger als ein Millimeter dicken Platten, auf sogenannten Wafern, aufgebracht.
Der polykristalline Diamant wurde in Zusammenarbeit mit dem Fraunhofer Institut für Angewandte Festkörperphysik und der Firma Diamond Materials in Freiburg hergestellt. Die im Rahmen des Projekts „Integrated Quantum-Photonics" am DFG-Centrum für funktionelle Nanostrukturen (CFN) in Karlsruhe hergestellten Prototypen eröffnen neue Wege für komplett optisch gesteuerte Plattformen, wie sie in der Grundlagenforschung und in der erweiterten Sensor-Anwendung vermehrt benötigt werden. Sensor-Anwendungen sind beispielsweise Beschleunigungsmesser, die sie in zahlreichen elektronischen Geräten integriert sind: vom Sensor für den Airbag bis hin zur Wasserwaage für das Smartphone.

Die Studie auf dem Portal von Nature: http://www.nature.com/ncomms/index.html
Das DFG-Centrum für Funktionelle Nanostrukturen (CFN) hat sich einem wichtigen Bereich der Nanotechnologie verschrieben: den funktionellen Nanostrukturen. Ziel ist es durch exzellente interdisziplinäre und internationale Forschung Nano-Strukturen mit neuen technologischen Funktionen darzustellen sowie den ersten Schritt von der Grundlagenforschung zur Anwendung zu gehen. Zurzeit arbeiten in Karlsruhe mehr als 250 Wissenschaftler und Techniker über das CFN vernetzt in mehr als 80 Teilprojekten zusammen. Der Fokus liegt auf den Bereichen Nano-Photonik, Nano-Elektronik, Molekulare Nanostrukturen, Nano-Biologie und Nano-Energie. http://www.cfn.kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungs-zentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weitere Kontakte:

Tatjana Erkert
DFG-Centrum für Funktionelle
Nanostrukturen (CFN)
www.cfn.kit.edu
Tel.: +49 721 608-43409
Fax: +49 721 608-48496
E-Mail: tatjana.erkert@kit.edu
Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail:schinarakis@kit.edu

Monika Landgraf | KIT
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Oberflächeneigenschaften für holzbasierte Werkstoffe
14.08.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Europaweit einzigartiges Forschungszentrum geht an den Start
14.08.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics