Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Quanten-Strom im Graphen

20.05.2016

Wenn der Strom in Portionen fließt: Berechnungen der TU Wien liefern Erkenntnisse über die Quanten-Eigenschaften des Kohlenstoff-Materials Graphen.

Dass Graphen ganz bemerkenswerte Eigenschaften hat, ist bekannt. Bereits 2010 wurde der Nobelpreis für die Entdeckung dieses ganz besonderen Materials vergeben, das aus einer Schicht wabenförmig angeordneter Kohlenstoffatome besteht.


Eine Elektronenwelle im Graphen

TU Wien


Florian Libisch erklärt die Struktur von Graphen

TU Wien

Doch je weiter die Graphen-Forschung fortschreitet, umso mehr bemerkenswerte Effekte kann man dem Material entlocken. Nun gelang es einem internationalen Forschungsteam mit Beteiligung der TU Wien, das Verhalten der Elektronen zu erklären, die sich durch enge Stellen in einer Graphen-Schicht bewegen. Die Ergebnisse wurden nun im Fachjournal „Nature Communications“ veröffentlicht.

Das Elektron ist eine Welle

„Wenn Strom durch Graphen fließt, dann sollte man sich die Elektronen nicht vorstellen wie kleine Kugeln, die durch das Material rollen“, sagt Florian Libisch vom Institut für Theoretische Physik der TU Wien, der den theoretischen Teil des Projektes leitete.

Die Elektronen schwappen als langgestreckte Wellenfront durch das Material, die Wellenlänge des Elektrons kann hundertfach größer sein als der Abstand zwischen den Kohlenstoffatomen. „Das Elektron sitzt nicht auf einem bestimmten Kohlenstoffatom, es befindet sich gewissermaßen überall gleichzeitig“, erklärt Libisch.

Untersucht wurde das Verhalten der Elektronen, die sie sich durch Engstellen im Graphen hindurchzwängen müssen. „Je schmäler diese Verengung wird, umso weniger Strom fließt hindurch“, sagt Florian Libisch. „Allerdings zeigt sich, dass der Zusammenhang zwischen dem Stromfluss, dem Durchmesser der Engstelle und der Energie der Elektronen ziemlich kompliziert ist. An bestimmten Stellen weist er charakteristische Sprünge auf, das ist ein klarer Hinweis auf Quanteneffekte.“

Ist die Wellenlänge des Elektrons so groß, dass sie nicht durch die Engstelle hindurchpasst, ist der Stromfluss sehr gering. „Wenn man die Energie des Elektrons erhöht, dann wird seine Wellenlänge kleiner“, erklärt Libisch. „Irgendwann passt dann eine Wellenlänge durch die Engstelle, dann zwei, dann drei – dadurch erhöht sich auch der Stromfluss in charakteristischen Stufen.“ Der Stromfluss wächst nicht kontinuierlich, er ist quantisiert.

Theorie und Experiment

Dieser Effekt lässt sich auch in anderen Materialien beobachten – ihn in Graphen aufzuspüren war aber bedeutend schwieriger, weil es durch die ungewöhnlichen elektronischen Eigenschaften des Materials zu verschiedenen zusätzlichen Effekten kommt. Die Experimente wurden an der RWTH Aachen in der Gruppe von Prof. Christoph Stampfer durchgeführt, theoretische Rechnungen und Computersimulationen in Wien von Larisa Chizhova und Florian Libisch in der Gruppe von Prof. Joachim Burgdörfer.

Beides ist äußerst herausfordernd: Für die Experimente musste man die Graphen-Stücke nanometergenau in Form bringen, stabilisiert wurden sie, indem man das Graphen zwischen Atomlagen von hexagonalem Bornitrid einschloss.

Ähnlich herausfordernd ist es, die Experimente am Computer zu simulieren. „Ein frei bewegliches Elektron in der Graphen-Schicht kann so viele verschiedene Quantenzustände annehmen, wie es dort Kohlenstoffatome gibt“, sagt Florian Libisch. „In unserem Fall sind das über zehn Millionen.“ Das macht die Rechnungen extrem aufwändig – will man etwa ein Elektron in einem Wasserstoffatom beschreiben, kommt man mit einigen wenigen Quantenzuständen gut aus. Das Team vom Institut für Theoretische Physik entwickelte daher Computercodes, die am Hochleistungsrechner VSC3 an der TU Wien auf hunderten Prozessoren gleichzeitig laufen.

Randzustände

Eine wichtige Rolle für das Verhalten von Graphen spielt der Randbereich des Materials: „Nachdem die Atome in einer sechseckigen Wabenform angeordnet sind, ist der Rand niemals eine völlig gerade Linie, er ist auf atomarer Skala betrachtet immer gezackt“, sagt Florian Libisch. Die Elektronen können dort spezielle Randzustände einnehmen, die einen wichtigen Einfluss auf die elektronischen Eigenschaften des Materials haben.

„Nur mit Computersimulationen auf extrem großer Skala auf den größten heute verfügbaren Computerclustern können wir die experimentell hergestellten Graphenstrukturen detailliert simulieren, und diesen Randzuständen auf die Spur kommen“, sagt Libisch. „Wie die augezeichnete Übereinstimmung von Rechnung und Experiment zeigt, ist uns das gut gelungen.“

Die Entdeckung von Graphen öffnete die Tür zur Erforschung ganz unterschiedlicher ultradünner Materialien, die nur aus einzelnen Atomlagen bestehen. Speziell die Kombination dieser Schichten, zum Beispiel wie hier Graphen mit hexagonalem Bornitrid – verspricht in Zukunft spannende Erkenntnisse und neue Anwendungen im Bereich der Nanoelektronik. „Bedenkt man, dass die Größe der Transistoren in der heutigen Elektronik schon im zwanzig-Nanometer Bereich liegt, wird man für die Elektronik von morgen auf jeden Fall viel über Quantenphysik wissen müssen“, ist Libisch sicher.

Originalpublikation: “Size quantization of Dirac fermions in graphene constrictions”, nature Communications, DOI: 10.1038/NCOMMS11528

Rückfragehinweis:
Dr. Florian Libisch
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608
florian.libisch@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Methoden zur Beschichtung von Schiffsrümpfen
22.03.2019 | Hochschule Coburg

nachricht Innovative Zusatzwerkstoffe für den 3D-Druck machen komplexe Metallbauteile hochfest und leicht
22.03.2019 | Brandenburgische Technische Universität Cottbus-Senftenberg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics