Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das geheime Leben der Gummireifen

13.07.2017

Chemnitzer Institut für Strukturleichtbau erforscht ökologische Verwertung von Elastomeren aus Altreifen

Was passiert eigentlich mit alten Autoreifen? Mit dieser Frage befassen sich aktuell Wissenschaftler und Wissenschaftlerinnen am Institut für Strukturleichtbau der Technischen Universität Chemnitz. Die Frage hat vor dem Hintergrund von Ressourcenschonung und Umweltschutz eine hohe Brisanz, denn jährlich fallen weltweit etwa 1,8 Milliarden Altreifen an:


Feinmehl aus Elastomeren.

Hendrik Schmidt


Der Reaktruder vermahlt die Elastomer-Reste. Dr. Stefan Hoyer, wissenschaftlicher Mitarbeiter am Institut für Strukturleichtbau der TU Chemnitz, begutachtet das Feinmehl.

Hendrik Schmidt

„Über die Hälfte aller Altreifen werden immer noch energetisch verwertet, also verbrannt“, erklärt Dr. Stefan Hoyer, wissenschaftlicher Mitarbeiter am Institut für Strukturleichtbau. Er beschäftigt sich mit dem sogenannten „Elastomer-Recycling“, also der Frage, wofür formfeste aber elastisch verformbare Kunststoffe wiederverwendet werden können, die Bestandteil u. a. von Reifen sind.

„Das Recycling von Gummi ist schwierig, weil jede Anwendung ihre ganz eigene Rezeptur hat. Sortenreinheit hat hier oberste Priorität und die ist gerade für Reifen schwer herzustellen“, erklärt Hoyer.

Entwicklung neuer Werkstoffe

Die Chemnitzer Lösung im Forschungsbereich Extrusiontechnologien und Recycling ist so intelligent wie effizient: Bisher wurden Altreifen meist zu relativ groben Granulaten zerkleinert und mit Bindemitteln zu Boden- und Fallschutzmatten oder Gummischichtungen im Automobilbau gepresst.

Aber auch als Kunstrasen-Granulat für Sport- und Spielplätze verwendet. An der TU Chemnitz werden jetzt neue Werkstoffe mit hoher Qualität und Leistungsfähigkeit entwickelt. Feinste Gummi-Mehle werden dazu mit thermoplastischen Kunststoffen gemischt.

Diese sogenannten „Thermoplast-Elastomer-Compounds“ sind schmelzbar und können z. B. im Spritzgießverfahren zu komplexen Bauteilen verarbeitet werden. Den Produkten ist später nicht mehr anzusehen, dass sie früher einmal Reifen waren.

Für diese Art der Wiederverwertung wurde auch eine ganz neue Verarbeitungstechnologie entwickelt: die einstufige Direkt-Extrusion. „Wir kombinieren die Compoundierung und die Profilextrusion, also das Mischen der Ausgangsstoffe und das Formgeben. Aber eben ohne den Umweg über Granulat. Wir sparen uns einen Prozessschritt und damit vor allem Energie und schützen so das Material vor thermischen Schäden“, so Forscher Hoyer.

Auf diese Weise können endlos gefertigte, hochwertige Matten für Verschleiß- und Schallschutz hergestellt werden. „Aktuell sind wir noch in der Phase der Markteinführung, kooperieren aber bereits mit einer Firma aus der Region.“

Neue Technologie minimiert Ressourcen-Verbrauch – MERGE-Potential

Eine andere Technologie, die das Team um Stefan Hoyer entwickelt hat, ist hingegen bereits international im Einsatz: „Wir haben die Wiederverwertung von technischen Elastomeren optimiert“, berichtet Hoyer stolz. Technische Elastomere sind Gummimaterialien, die für technische Anwendungen zum Einsatz kommen, z. B. Dichtungsringe. Bei deren Herstellung fällt oft viel Ausschuss an, der meist teuer entsorgt werden muss.

„Unsere Technologie kann diese Reststoffe so aufbereiten, dass sie einfach wieder in den Herstellungsprozess zurückgeführt werden können. Das sortenreine Rezyklat wird wieder unter die Ausgangsstoffe gemischt und der Prozess läuft weiter.“ Als Rezyklat bezeichnen die Forschenden Feinmehl aus den Produktionsresten, die im sogenannten „Reaktruder“ vermahlen werden.

Die verwendete Technologie des Warmmahlens existierte zwar bereits, doch Hoyer entwickelte und optimierte diese im Rahmen seiner Promotion umfassend weiter. Dazu mussten die Prozessstabilität verbessert, die Reinigung vereinfacht, die Baugröße kompakter gestaltet und der Verschleiß reduziert werden. Dank dieses Verfahrens können jetzt sogar Kleinchargen wirtschaftlich sortenrein recycelt werden. „Ganz nebenbei haben wir auch den Energieverbrauch um etwa 60 Prozent reduziert“, ergänzt Hoyer.

Die Technologie zielt insbesondere auf kleine und mittlere Unternehmen (KMU), die ihre Reststoffe selbstständig verwerten wollen. Ihnen steht nun ein effizientes Werkzeug zum Recycling von Elastomeren zur Verfügung, mit dem die Ausgangsrohstoffe nachhaltig genutzt und wiederverwertet werden können. Einsparungen in Sachen Energiebedarf, Entsorgungskosten, Ressourcen und CO2-Ausstoß sind weitere positive Effekte der Forschungsergebnisse. „Aber wir haben noch viel vor“, so Hoyer.

„Wir wollen im zweiten Projektteil des Bundesexzellenzclusters MERGE mitwirken, sofern er von der Deutschen Forschungsgemeinschaft (DFG) genehmigt wird. In den Werkstoffwissenschaften wollen wir weiter Grundlagenforschung betreiben, unsere Thermoplast-Elastomer-Compounds in ihren Rezepturen ändern und auch mit Duroplasten oder anderen Elastomeren arbeiten. Neue Werkstoffe zu entwickeln, zu charakterisieren und effiziente Verarbeitungstechnologien zu entwickeln, das sind unsere Ziele.“

Veröffentlichungen:

Hoyer S., Kroll L., Nendel W. et al.: Werkstoffliches Recycling von Elastomeren in Theorie und Praxis. In: GAK Gummi Fasern Kunststoff, 67. Jahrgang (2014), Nr. 12, S. 752–761

Hoyer, S.: Neuartige Warmmahltechnologie zum Recycling von Elastomeren und Analyse prozessbedingter Eigenschaften. Chemnitz, Technische Universität Chemnitz, Institut für Strukturleichtbau, Dissertation, 2014. Dr. Hut Verlag, München, 2015; ISBN 9783843921275

Weitere Informationen erteilt Dr.-Ing. Stefan Hoyer, Professur Strukturleichtbau und Kunststoffverarbeitung der TU Chemnitz, E-Mail: stefan.hoyer@mb.tu-chemnitz.de, Telefon: 0371-531 37814

Weitere Informationen:

http://mytuc.org/tnft

Matthias Fejes | Technische Universität Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Verbundene Nanodreiecke zeigen Weg zu magnetischen Kohlenstoff-Materialien
02.06.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems
29.05.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleines Protein, große Wirkung

In Meningokokken spielt das unscheinbare Protein ProQ eine tragende Rolle. Zusammen mit RNA-Molekülen reguliert es Prozesse, die für die krankmachenden Eigenschaften der Bakterien von Bedeutung sind.

Meningokokken sind Bakterien, die lebensbedrohliche Hirnhautentzündungen und Sepsis auslösen können. Diese Krankheitserreger besitzen ein sehr kleines Protein,...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Alternativer Zement - Rezeptur für Öko-Beton

04.06.2020 | Architektur Bauwesen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungsnachrichten

Unschuldig und stark oxidierend

04.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics