Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Fließverhalten im Nanometerbereich: was Tropfen stoppt und Nanobläschen am Leben erhält

12.04.2016

Dieses Bild kennt jeder: ein Regentropfen fließt über die Fensterscheibe. An einer bestimmten Stelle stoppt er seinen Lauf, ein zweiter Regentropfen rinnt hinzu und gemeinsam vereint fließen beide die Scheibe weiter hinab. Kleinste Unebenheiten oder Verschmutzungen auf der Fensterscheibe scheinen den Lauf der Regentropfen aufzuhalten. Wäre die Oberfläche vollkommen eben und chemisch rein, dann würden Regentropfen ungehindert fließen können. Oberflächendefekte, wie kleine Erhebungen, Vertiefungen oder auch chemische Verunreinigungen halten den Flüssigkeitstropfen auf.
Dies sind Phänomene aus dem Alltag, die jeder kennt und mit bloßem Auge beobachten kann.

Der Trend in Wissenschaft und Technik geht jedoch seit Jahren zu immer feiner strukturierten Fest-körperoberflächen, die für vielfältige Anwendungen genutzt werden können. Typische Strukturab-messungen liegen hierbei im Mikro- oder sogar im Nanometerbereich (ein Nanometer ist ein milli-onstel Millimeter).


Das theoretische Modell in bildlicher Darstellung: eine Flüssigkeitsfront schiebt sich über eine Verunreinigung (oben) oder eine Erhebung (unten).

Max-Planck-Institut für Intelligente Systeme, Stuttgart

Wie wird nun aber das Fließverhalten eines Tropfens durch derart feine Oberflächenstrukturen beeinflusst, oder wie wird der Transport von winzigen Flüssigkeitsmengen auf extrem schmalen Bahnen durch darauf befindliche winzige Oberflächendefekte behindert?

Die fraglichen Oberflächendefekte sind dann nicht mehr viel größer als die Moleküle oder Atome, welche die Flüssigkeit oder die Festkörperoberfläche aufbauen. Mit dem Auge lässt sich der Einfluss derart kleiner Oberflächendefekte auf den Flüssigkeitstransport nicht mehr studieren.

Selbst mit modernsten experimentellen Methoden ist es derzeit nicht möglich, den Flüssigkeitstransport über derart kleine Oberflächendefekte zu beobachten und zu untersuchen. Theoretische Methoden und Modellrechnungen überwinden diese Herausforderungen.

Die Forschungsabteilung „Theorie inhomogener kondensierter Materie“, unter Leitung von Prof. Dr. Siegfried Dietrich am Max-Planck-Institut für Intelligente Systeme in Stuttgart, hat ein Modell entwickelt und numerisch analysiert, welches die auf der Nanometerskala relevante molekulare Struktur einbezieht. Mit diesem theoretischen Modell kann der Widerstand, den wenige Nanometer kleine Unebenheiten oder Verunreinigungen dem Flüssigkeitstransport entgegensetzen, berechnet werden.

Die Ergebnisse veröffentlichten Dr. Alberto Giacomello und Dr. Lothar Schimmele gemeinsam mit Professor Dr. Siegfried Dietrich kürzlich in der Zeitschrift „Proceedings of the National Academy of Sciences“ (PNAS).

In dieser international angesehenen, multidisziplinären Zeitschrift werden nur Arbeiten von außerordentlicher wissenschaftlicher Bedeutung publiziert. Außerdem müssen diese von übergreifendem Interesse auch für weitere Fachgruppen sein, wie in diesem Fall z.B. für Wissenschaftler aus den Bereichen Mikrofluidik, Nanostrukturphysik oder Oberflächenchemie.

Das Computerprogramm hierfür hat Lothar Schimmele über mehrere Jahre hinweg entwickelt. Alberto Giacomello hat es anlässlich dieser Arbeit zusätzlich mit einem neuartigen Algorithmus kombiniert. Das Programm ermöglicht zu berechnen, wie sich Flüssigkeiten unter dem Einfluss äußerer Kräfte, die z.B. durch begrenzende Wände entstehen, verhalten.

Für die nun vorgestellten Untersuchungen haben Alberto Giacomello und Lothar Schimmele ein einfaches Modell gewählt: zwei ebene Wände, die parallel zueinander stehen und einen Kanal von wenigen Nanometern Durchmesser bilden. Auf der unteren Wand dieses engen Kanals trifft die Flüssigkeit auf ein Hindernis, wie z.B. eine Verschmutzung oder eine Unebenheit. Die an diesem einfachen System gewonnenen Ergebnisse lassen sich dann mit Hilfe theoretischer Überlegungen auf andere Geometrien übertragen.

„Bisher ist die Fachwelt davon ausgegangen, dass ein Hindernis, das kleiner als ein Nanometer ist, zu schwach sei, um eine Flüssigkeit aufzuhalten. Dies konnten wir mit unseren Berechnungen widerlegen“, erklärt Dr. Lothar Schimmele.

Die Ergebnisse dieser Untersuchungen können auch zur Erklärung eines weiteren Phänomens herangezogen werden. Winzige Gasbläschen, die sich z.B. bei der Katalyse oder Elektrolyse an Oberflächen bilden, haben oft eine unerwartet lange Lebensdauer. Diese Gasbläschen verringern jedoch die Effektivität von Elektrolyseprozessen und stören diese.

Die Verankerung eines Gasbläschen an der Oberfläche verhindert das beständige Anwachsen des Drucks im Bläschen, wodurch es stabilisiert wird. Die Ergebnisse der Forschungsgruppe Dietrich können die Verankerung erklären: Unebenheiten auf der Oberfläche, die nur wenige Nanometer klein sind, sind hierfür verantwortlich.

Auch für weitere praktische Anwendungen können die in der Arbeit gewonnenen Erkenntnisse von Bedeutung sein. Hier ist zum Beispiel die Nutzung von Flüssigkeitsbrücken für den künstlichen Zusammenbau von Nanostrukturen zu erwähnen. Mit Hilfe dieser Brücken werden Nanoteilchen positioniert und orientiert. Auch hier spielt die Verankerung an Unebenheiten eine wichtige Rolle.

Die Wissenschaftler haben sich bereits weitere Ziele gesteckt: sie wollen unterschiedliche Uneben-heiten auf Oberflächen untersuchen, um herauszufinden welchen Einfluss die jeweilige Materialzusammensetzung oder geometrische Form einer Nanometer kleinen Unebenheit auf das Aufhalten eines Flüssigkeitstropfens hat.

Die Forscher interessieren sich auch für kollektive Phänomene. „Als nächstes wollen wir untersu-chen, welchen Einfluss mehrere Defekte haben, die als Gruppe nahe beieinander liegen. Außerdem interessiert uns, wie sich das Fließverhalten von Flüssigkeiten bei Hindernissen verhält, die durch Vertiefungen auf Oberflächen entstehen, anstelle von den bisher untersuchten Erhebungen“, erklärt Dr. Lothar Schimmele.

Weitere Informationen:

http://www.is.mpg.de/de/dietrich

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neues Material mit magnetischem Formgedächtnis
04.06.2019 | Paul Scherrer Institut (PSI)

nachricht Weltraumschrott verringern: HZG-Wissenschaftler helfen beim Sauberhalten
30.05.2019 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics