Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Cluster-Tool beobachtet Hochtemperatur-Prozesse in funktionalen Dünnschichten

23.08.2018

Eine internationale Forschergruppe um Dr. Matthias Krause vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat ein neues Cluster-Tool aufgebaut und in Betrieb genommen. Mit diesem lassen sich funktionale Schichten im Nano- bis Mikrometer-Bereich erzeugen und bei Temperaturen bis 800 Grad Celsius auf ihre strukturellen sowie optischen Eigenschaften „in situ“ und in Echtzeit untersuchen. So wollen die Wissenschaftler ein verbessertes Verständnis der Prozesse gewinnen, die bei hohen Temperaturen in mehrlagigen funktionalen Dünnschichten ablaufen. Erste Ergebnisse und weiterführende Details zum Messplatz-Aufbau wurden vor kurzem im Fachmagazin „Analytische Chemie“ veröffentlicht.

Bereits heute sind dünne funktionale Schichten der Schlüssel für eine Vielzahl von Anwendungen. Bis zu wenigen Nanometern dick, können sie auf verschiedenste Trägermaterialien aufgebracht und auch als Multilagen kombiniert werden. Auf diese Weise lassen sich die optischen, elektrischen, mechanischen oder auch chemischen Eigenschaften der Oberfläche gezielt verändern – mit Auswirkungen auf die Funktionseigenschaften des Festkörpers.


Cluster-Tool am HZDR-Ionenstrahlzentrum

HZDR / O. Killig

Als Beschichtungsverfahren hat sich dafür das Magnetronsputtern etabliert. Es ist heute aus der Mikroelektronik genauso wenig wegzudenken wie aus der Glas- und Solarindustrie. Sputtern gehört zu den PVD-Verfahren (physical vapour deposition oder physikalische Gasphasenabscheidung). Dabei werden die Ionen eines Plasmas in einem elektrischen Feld im Vakuum beschleunigt. Treffen sie auf das Spendermaterial, das sogenannte Target, lösen sie aus dessen Oberfläche Atome heraus und übertragen einen Teil ihrer Energie auf diese.

Die freigesetzten Atome bewegen sich zum eigentlichen Werkstück, dem Substrat, und schlagen sich als dünne Schicht auf diesem nieder. Speicherscheiben von Festplatten erhalten durch Sputtern ihre magnetisierbare Schicht und Wafer für die Chipherstellung werden auf diese Weise metallisiert; gesputterte Beschichtungen auf Flachglasscheiben sorgen für Wärmeschutz und Dünnschichtsolarzellen kommen so zu ihren metallischen Kontaktschichten; auch viele Zukunftstechnologien wie biegsames Glas, farbige organische Leuchtdioden (OLED), leitfähige transparente Oxide, Kollektoren für solarthermische Kraftwerke oder Bipolarplatten für Brennstoffzellen werden erst durch Sputtern möglich.

Aus diesem breiten Anwendungsspektrum können mit dem Cluster-Tool vielfältige Fragestellungen untersucht werden, da es viele, einander ergänzende experimentelle Techniken vereint. Beispielsweise machen die erzielbaren hohen Temperaturen das Cluster-Tool besonders geeignet für Studien zu den drei letztgenannten Anwendungen. Gerade bei leitfähigen transparenten Oxiden, die beispielsweise für Touchscreens oder Thermogläser in der Architektur verwendet werden, Sonnenkollektoren oder Brennstoffzellen spielt der Aspekt der Energieumwandlung eine zentrale Rolle.

Hier bedeuten hohe Temperaturen gleichzeitig hohe Wirkungsgrade. Aber unter den hohen Temperaturen, die beispielsweise in Festoxid-Brennstoffzellen herrschen, verändern sich Struktur und Zusammensetzung der Dünnschichten. Es bilden sich Defekte. Elemente werden umverteilt. Abbauprozesse setzen ein. Sowohl in jeder einzelnen als auch zwischen den verschiedenen Schichten treten Phasenübergänge auf.

Es kommt zu Grenzflächenmischung und Materialaustausch mit der Umgebung. All diese Effekte haben Einfluss auf die Funktion der Beschichtung. Sie zu kennen, ist deshalb nicht nur für die Wissenschaft, sondern auch für die Industrie von essenzieller Bedeutung. Hier hilft das neue Cluster-Tool des HZDR. Denn damit lassen sich „in situ“ und in Echtzeit all jene Prozesse beobachten, die in den Dünnschichten beim Einwirken hoher Temperaturen ablaufen. Dazu haben Krause und seine Kollegen drei verschiedene Analyseverfahren miteinander kombiniert: Rutherford-Rückstreu-Spektrometrie, Raman-Spektrometrie und Spektroskopische Ellipsometrie.

„Unser Cluster-Tool besteht aus vier Kammern, die um eine zentrale Transferkammer angeordnet sind“, sagt Matthias Krause. „In allen Kammern können wir die Temperaturen zwischen -100 und 1.000 Grad Celsius einstellen. Die Spektrometer liefern dabei bis zu 800 Grad Celsius verlässliche Ergebnisse.“ In der Sputter-Kammer werden die Probenträger beschichtet. Dazu wurden zwei Magnetron-Sputteranlagen und eine ECR-Ionenquelle zur Probenreinigung und -strukturierung integriert.

Die Ionenstrahl-Analysekammer für die Rutherford-Rückstreu-Spektrometrie ist an den Beschleuniger des HZDR-Ionenstrahlzentrums angeschlossen und gibt Aufschluss über die Elementzusammensetzung und die Dicke der einzelnen Schichten. In der Raman-Kammer wird die Probe dem konzentrierten Licht von Lasern verschiedener Wellenlängen ausgesetzt. Aus dem erhaltenen Ramanspektrum lassen sich genaue Aussagen zur Schichtstruktur ableiten, wie beispielsweise zur Kristallinität, Kristallorientierung und chemischen Zusammensetzung.

Die Ellipsometrie-Kammer ist für den sichtbaren und mittleren infraroten Spektralbereich konzipiert. Schichtdicken und optische Konstanten lassen sich damit zuverlässig ermitteln. Die Ellipsometrie liefert die beste Zeit- und Tiefenauflösung der drei eingesetzten Messverfahren. Innerhalb des Cluster-Tools kann die im Durchmesser maximal 25 Millimeter große Probe in weniger als 30 Sekunden zwischen den verschiedenen Kammern transferiert werden.

Die Kombination aus leistungsfähigem Ionenbeschleuniger und drei verschiedenen Spektrometrie-Verfahren ermöglicht die detaillierte Probencharakterisierung mit hoher zeitlicher und Tiefenauflösung, und zwar unabhängig, ob die Proben amorph oder kristallin vorliegen. Das Cluster-Tool ist deshalb ein universeller und einzigartiger Messplatz zur Untersuchung aller grundlegenden Werkstofftypen: Keramiken, Kunststoffe und Metalle.

„Mit unserem Cluster-Tool bieten wir Wissenschaftlern und Industriepartnern die Möglichkeit, das Verhalten von Dünnschichten bei hohen Temperaturen in Echtzeit zu untersuchen“, sagt Krause. „Damit lassen sich nicht nur bekannte Schichtmaterialien und Layer-Strukturen auf ihr Verhalten unter Hochtemperatur-Bedingungen hin analysieren, sondern auch neue Ansätze testen.“

Medienkontakt:
Dr. Christine Bohnet | Leiterin HZDR-Kommunikation
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen betreibt das HZDR große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Hamburg, Leipzig) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Matthias Krause
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3578 | E-Mail: matthias.krause@hzdr.de

Originalpublikation:

R. Wenisch, F. Lungwitz, D. Hanf, R. Heller, J. Zscharschuch, R. Hübner, J. von Borany, G. Abrasonis, S. Gemming, R. Escobar-Galindo, M. Krause: Cluster Tool for In Situ Processing and Comprehensive Characterization of Thin Films at High Temperatures, in Analytical Chemistry, 2018 (DOI: 10.1021/acs.analchem.8b00923)

Weitere Informationen:

https://www.hzdr.de/db/Cms?pOid=56684&pNid=99

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Hygienische und virenfreie Oberflächen: Smartphones schnell und sicher mit Licht desinfizieren
06.04.2020 | Institutsteil Angewandte Systemtechnik (AST) des Fraunhofer IOSB

nachricht Innovative Materialien und Bauelemente für die Terahertz-Elektronik
02.04.2020 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics