Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomimetischer Zahnersatz

28.09.2015

ETH-Materialforschende entwickeln ein Verfahren, mit dem sie die komplexe Feinstruktur von biologischen Verbundmaterialien wie Zähnen oder Muschelschalen nachahmen. Sie können damit künstlich Materialien erschaffen, die genauso hart oder zäh sind wie ihre natürlichen Vorbilder.

In der Natur gibt es kaum langlebigere und zähere Strukturen als Zähne oder Muschelschalen. Das Geheimnis dieser Materialien ist ihre besondere Feinstruktur: Sie sind aus verschiedenen Lagen aufgebaut, in denen unzählige Mikroplättchen in jeweils identischer Ausrichtung aneinander gefügt sind.


Querschnitt des künstlichen Zahns unter dem Elektronenmikroskop (Falschfarbenbild): Im Zahnschmelz sind Keramikplättchen vertikal angeordnet, im Zahnbein schräg bis horizontal.

Bild: Hortense Le Ferrand / ETH Zürich

Zwar gibt es bereits Methoden, mit denen Materialforscher Perlmutt imitieren konnten. Nach wie vor aber war es eine Herausforderung, ein Material zu erschaffen, das die gesamte Muschelschale nachahmt und vergleichbare Eigenschaften und die komplexe Struktur erreicht.

Nun hat eine Gruppe von Forschenden um André Studart, Professor für komplexe Materialien, ein neues Verfahren entwickelt, welches das natürliche Vorbild beinahe perfekt imitiert. So konnten die Wissenschaftler ein mehrschichtiges, zähes Material herstellen, das auf dem Bauprinzip von Zähnen oder Muschelschalen beruht und den Vergleich damit nicht zu scheuen braucht. Den ETH-Forschenden ist es erstmals gelungen, in einem einzigen Stück verschiedene Lagen mit unterschiedlich orientierten Mikroplättchen zu erhalten.

Ihr Verfahren nannten die ETH-Forschenden «magnetisch unterstützten Schlickerguss» (englisch: Magnetically assisted slip casting, MASC). «Das Schöne an unserem neuen Verfahren ist, dass es auf einer 100-jährigen Technik aufbaut und diese mit moderner Materialforschung kombiniert», sagt Studarts Doktorand Tobias Niebel, Mitautor einer Studie, die soeben in der Fachzeitschrift «Nature Materials» erschienen ist.

100 Jahre alte Technik neu genutzt

Und so funktioniert MASC: Erst erstellen die Forscher von einem beliebigen Objekt einen Gipsabdruck, der als Gussform dient. In diese Form giessen sie eine Suspension, die magnetisierte Keramikplättchen wie zum Beispiel Aluminiumoxid-Plättchen enthält. Die Poren der Gipsform saugen den flüssigen Anteil der Suspension langsam auf. Dadurch verfestigt sich das Material von aussen nach innen und wird hart.

Einen schichtartigen Aufbau erhalten die Wissenschaftler, indem sie während des Gussvorgangs ein Magnetfeld anlegen, dessen Richtung sie in regelmässigen Zeitabständen ändern. Solange das Material flüssig ist, richten sich die Keramikplättchen am Magnetfeld aus. Im verfestigten Material behalten die Plättchen ihre Orientierung bei.

Über die Zusammensetzung der Suspension und die Ausrichtung der Plättchen lassen sich über einen fortlaufenden Prozess in ein und demselben Objekt verschiedene Schichten mit unterschiedlichen Materialeigenschaften erzeugen. Dadurch entstehen komplexe Materialien, die natürliche Vorbilder wie Perlmutt oder Zahnschmelz nahezu perfekt imitieren. «Unsere Technik ist ähnlich wie 3D-Printing, jedoch zehnmal schneller und viel kostengünstiger», sagt Florian Bouville, Postdoc bei Studart und Co-Erstautor der Studie.

Künstlicher Zahn aus der Gipsform

Um das Potenzial der MASC-Technik aufzuzeigen, fertigte die Forschungsgruppe von André Studart einen künstlichen Zahn an, dessen Mikrostruktur diejenige eines echten Zahns imitiert. Die Oberfläche dieses Kunstzahns ist hart und komplex strukturiert wie diejenige eines echten Zahnes, während die darunter liegende Schicht weicher ist, genau wie das Zahnbein im natürlichen Vorbild.

Erst stellten die Erstautorin der Studie, die Doktorandin Hortense Le Ferrand, und ihre Kollegen einen Gipsabdruck eines menschlichen Weisheitszahnes her. Diese Gussform befüllten sie mit einer Suspension, die neben Aluminiumoxid-Plättchen auch Glas-Nanopartikel als Mörtel enthielt. Mit einem Magneten richteten sie die Plättchen senkrecht zur Oberfläche ihres Objektes aus. Nachdem die erste Lage trocken war, gossen die Wissenschaftler eine zweite Suspension in dieselbe Gussform. Diese Suspension enthielt jedoch keine Glaspartikel. Die Aluminiumoxid-Plättchen in der zweiten Schicht wurden mithilfe des Magneten waagrecht zur Zahnoberfläche ausgerichtet.

Diese zweilagige Struktur wurde schliesslich bei 1600 Grad «gebrannt», um das Material zu verdichten und zu härten. Fachleute sprechen bei diesem Vorgang von Sintern. Zuletzt füllten die Forscher die Poren, die nach dem Sintern noch vorhanden waren, mit einem in der Zahnmedizin verwendeten Kunststoff-Monomer, welches sich anschliessend polymerisierte.

Kunstzahn verhält sich wie echter Zahn

Mit dem Resultat sind die ETH-Forscher sehr zufrieden. «Das für den Kunstzahn erhobene Profil für Härte und Zähigkeit deckt sich genau mit demjenigen eines natürlichen Zahnes », freut sich Studart. Das Verfahren und das daraus hervorgehende Material würden sich daher für die Zahnmedizin anbieten.

Die aktuelle Studie sei jedoch erst ein Machbarkeitsnachweis, der aufzeige, dass sich die natürliche Feinstruktur eines Zahnes im Labor nachbilden lasse, so Studart. «Damit man das Material als Zahnersatz verwenden kann, muss man jedoch dessen Aussehen stark optimieren.» Der künstliche Zahn zeige allerdings deutlich auf, dass man mit dem neuen Verfahren ein Mass an Kontrolle über die Mikrostruktur eines Verbundmaterials erreichen könne, die bislang lebenden Organismen vorbehalten blieb. Ein Teil des MASC-Prozesses, nämlich die Magnetisierung und Ausrichtung der Keramikplättchen mithilfe des Magneten, wurde bereits patentiert.

Das neue Fertigungsverfahren für solch biomimetischen Komplexmaterialien lässt sich jedoch auch anderweitig verwenden. So könnten anstelle der Aluminumoxid-Plättchen auch Kupferplättchen verwendet werden, was den Einsatz solcher Materialien in der Elektronik zuliesse. «Ausgangsstoffe und Orientierung der Plättchen lassen sich beliebig kombinieren, sodass rasch und einfach eine grosse Palette verschiedenster Materialtypen mit unterschiedlichen Eigenschaften realisierbar wären», sagt Studart.

Literaturhinweis

Le Ferrand H, Bouville F, Niebel TP, Studart AR. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Materials, AOP, 20th Sept 2015. DOI: 10.1038/nmat4419

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/09/biomimetis...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt
13.11.2018 | Technische Universität Graz

nachricht Wie beim Regenwurm: Neues atmendes Material schmiert sich bei Bedarf selbst
12.11.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics