Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016

Medizinische Implantate tragen oft Oberflächensubstrate, die Wirkstoffe abgeben oder auf denen Biomoleküle sowie Zellen besser haften können. Allerdings gab es bislang keine abbaubaren Gasphasenbeschichtungen für abbaubare Implantate wie chirurgische Nahtmaterialien oder Gerüste für die Gewebezucht. Eine Polymerbeschichtung, die im Körper wie ihr Träger abgebaut wird, stellen nun Forscher des Karlsruher Instituts für Technologie in der Fachzeitschrift Angewandte Chemie vor. (DOI: 10.1002/ange.201609307)

„Unsere neuen abbaubaren Polymerfilme könnten breite Anwendung für die Funktionalisierung und Beschichtung von Oberflächen finden, in den Biowissenschaften über die Medizin bis hin zur Lebensmittelverpackung“, so Professor Joerg Lahann, Co-Direktor des Instituts für Funktionelle Grenzflächen am Karlsruher Institut für Technologie. Gemeinsam in einem internationalen Team stellte er Polymerfilme her, die mit funktionellen Seitengruppen als „Verankerungspunkte“ für Moleküle ausgestattet waren, an die sie Fluoreszenzfarbstoffe und Biomoleküle andocken ließen.


Im mikroskopischen Fluoreszenzbild lassen sich die Strukturen aus Molekülen erkennen, die zu Testzwecken auf die bioabbaubare Beschichtung gedruckt wurden.

Bild: KIT

Die Forscher stellen jetzt erstmalig eine CVD-Methode vor, die zu abbaubaren Polymeren führt. Über spezielle Seitengruppen lassen sich Biomoleküle oder Wirkstoffe anknüpfen. Dies eröffnet neue Möglichkeiten, etwa für die Beschichtung bioabbaubarer Implantate. Die Polymerisation durch chemische Gasphasenabscheidung (chemical vapor deposition, CVD) ist eine einfache und verbreitete Methode zur Modifizierung von Oberflächen, mit der sich auch komplexe und verwinkelte Trägersubstrate sehr gleichmäßig mit Polymeren beschichten lassen.

Bei der CVD-Polymerisation werden die Ausgangsverbindungen verdampft, bei hoher Temperatur aktiviert und auf Oberflächen abgeschieden, wo sie dann polymerisieren. Allerdings konnten so bisher lediglich dauerhafte Implantate beschichtet werden, nicht aber Materialien, die nach Erfüllung ihrer Aufgabe abgebaut werden sollen, wie chirurgische Nahtmaterialien, Systeme zur gesteuerten Abgabe von Wirkstoffen, Medikamente freisetzende Stents oder Gerüste für die Gewebezucht. Denn per CVD ließen sich bisher keine abbaubaren Beschichtungen realisieren.

Jetzt schließt sich diese Lücke, denn die Wissenschaftler des Karlsruher Instituts für Technologie, von der University of Michigan (Ann Arbor, USA) und der Northwestern Polytechnical University (Xi'an, China) haben erstmalig ein CVD-Polymer mit abbaubarem Rückgrat synthetisiert. Dies gelang dem Forscherteam durch Co-Polymerisation zweier spezieller Monomertypen: Die bisher für dieses Verfahren eingesetzten Paracyclophane wurden mit zyklischen Keten-Acetalen kombiniert. Während die klassischen Polymere auf Basis der Paracyclophane ausschließlich über Kohlenstoff-Kohlenstoff-Bindungen verknüpft sind, lagert sich das Keten-Acetal während der Polymerisation so um, dass Ester-Bindungen (also Bindungen zwischen Kohlenstoff- und Sauerstoffatomen) innerhalb des Polymerrückgrates entstehen. Und Ester-Bindungen lassen sich in wässriger Umgebung spalten.

„Wie schnell der Abbau erfolgt, hängt vom Mengenverhältnis der beiden Monomer-Arten sowie von den Seitengruppen der Monomere ab“, erläutert Lahann. „Polare Seitengruppen machen den Polymerfilm weniger wasserabweisend und beschleunigen den Abbau, da leichter Wasser eindringen kann. Die Abbaugeschwindigkeit kann so der entsprechenden Anwendung angepasst werden.“ An Zellkulturen wiesen die Forscher bereits nach, dass weder das Polymer noch dessen Abbauprodukte toxisch sind.

Xie, F., Deng, X., Kratzer, D., Cheng, K. C. K., Friedmann, C., Qi, S., Solorio, L. and Lahann, J. (2016), Backbone-Degradable Polymers Prepared by Chemical Vapor Deposition. Angew. Chem.. doi:10.1002/ange.201609307

http://dx.doi.org/10.1002/ange.201609307

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://dx.doi.org/10.1002/ange.201609307

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Oberflächeneigenschaften für holzbasierte Werkstoffe
14.08.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Europaweit einzigartiges Forschungszentrum geht an den Start
14.08.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics