Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bessere Anwendungsmöglichkeiten für Laserlicht

28.03.2017

Internationales Forschungsteam entwickelt Hybridmaterial mit faszinierender Struktur

Licht wird unterschiedlich absorbiert, je nachdem, auf welches Material es trifft. Einem internationalen Forschungsteam, darunter Wissenschaftlerinnen und Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU), ist es gelungen, ein komplexstrukturiertes Hybridmaterial herzustellen, das ein einzigartiges Spektrum an Wellenlängen aufnehmen kann. Gleichzeitig streut es Licht und wird dadurch besonders interessant für Industrieanwendungen. In der Optoelektronik könnte es einen wichtigen Schritt für Laserlicht als Nachfolger von LEDs bedeuten.


In der Sputteringanlage der Technischen Universität Moldau werden Mikrotetrapoden aus Aerographit und Kohlenstoff mit noch kleineren Nanotetrapoden aus Zinkoxid besetzt.

Foto: Yogendra Mishra


Ein internationales Forschungsteam hat ein Nanohybridmaterial entwickelt mit einer faszinierenden Struktur von Tetrapoden.

Foto: Yogendra Mishra

Die in Nature Scientific Reports vorgestellten Ergebnisse sind das Resultat einer breit angelegten internationalen Forschungskooperation mit Mitgliedern aus Deutschland, Moldawien, Dänemark und Australien. „Als Materialwissenschaftler versuchen wir ständig, Nanomaterialien zu entwickeln, die ein möglichst breites Spektrum von Lichtwellen absorbieren können“, erklärt Dr. Yogendra Mishra.

Er leitet eine unabhängige Untergruppe der Arbeitsgruppe Funktionale Nanomaterialien von Professor Rainer Adelung am Institut für Materialwissenschaft an der Universität Kiel. Ihre besondere Expertise ist es, vierarmige Zinkoxid-Strukturen, sogenannte Tetrapoden, zu entwickeln.

„Jetzt haben wir Tetrapoden auf eine besondere Art und Weise hergestellt, wodurch ein Hybridmaterial aus Kohlenstoff und anorganischem Material entstanden ist. Es kann nicht nur ein einzigartiges Spektrum an Wellenlängen von Ultraviolett bis Infrarot absorbieren, sondern auch Licht streuen“, erläutert Mishra. „Durch seine komplexe 3D-Tetrapoden-Architektur wirft unser Material das Licht in sämtliche Richtungen zurück.“

Die lichtstreuende Eigenschaft des Hybridmaterials ist eine zentrale Voraussetzung, um Laserlicht für optoelektronische Technologien wie in der Automobilindustrie einzusetzen. „In der modernen Lichttechnologie sollen Produkte so hell wie möglich sein, ohne dabei unnötige Wärme zu erzeugen. So ist es bei herkömmlichen Glühbirnen der Fall, die ja schon fast ins Museum gehören. Die heutigen LEDs sind zwar besser, aber am effizientesten wäre leistungsstarkes, laserbasiertes Licht“, so Materialwissenschaftler Mishra. Dass Laserlicht bisher noch nicht umfangreich in der Industrie eingesetzt wird, liegt genau an seiner Leistungsstärke: Trifft es direkt auf das menschliche Auge, kann dies zu gesundheitlichen Schäden führen.

Das internationale Forschungsteam unter Kieler Beteiligung versuchte daher Bauelemente zu entwickeln, die gleichzeitig die Helligkeit von Laserlicht vermindern und dabei seiner hohen Leistungsstärke standhalten. Diesen Effekt hat die komplexe Tetrapoden-Architektur des neuen Hybridmaterials – das Ergebnis einer engen Zusammenarbeit. Die Kieler Zinkoxidtetrapoden wurden dafür an der Technischen Universität Hamburg-Harburg in Aerographit-Kohlenstoff-Tetrapoden umgewandelt.

Auf ihre Oberfläche setzte ein Team der Technischen Universität Moldau mit einer speziellen Sputtering-Anlage winzige Zinkoxid-Nanokristalle – ebenfalls in Tetrapodenform. So entstand das Hybridmaterial mit seiner faszinierenden räumlichen Architektur: Mikrotetrapoden aus Kohlenstoff besetzt mit noch kleineren Nanotetrapoden aus Zinkoxid. Wissenschaftlerinnen und Wissenschaftler der Universitäten Kopenhagen und Sydney untersuchten anschließend die Eigenschaften des neu entwickelten Nanomaterials.

„Materialien mit Zinkoxid-Aerographit-Architektur haben eine hohe technologische Bedeutung. Unser Ziel war es, sowohl ein kosteneffizientes Herstellungsverfahren zu entwickeln als auch die einzigartigen Eigenschaften des Materials umfassend zu verstehen“, sagt Professor Ion Tiginyanu, Leiter des National Centre for Materials and Testing an der Technischen Universität Moldau. Seine lichtstreuende Eigenschaft kombiniert mit dem einfachen und kostengünstigen Herstellungsverfahren macht das neue Hybridmaterial zu einem aussichtsreichen Kandidaten für einen breiten Einsatz in optoelektronischen Technologien, ist das Forschungsteam überzeugt.

Originalpublikation
Ion Tiginyanu, Lidia Ghimpu, Jorit Gröttrup, Vitalie Postolache, Matthias Mecklenburg, Marion A. Stevens-Kalce, Veaceslav Ursaki, Nader Payami, Robert Feidenhansl, Karl Schulte, Rainer Adelung, Yogendra Kumar Mishra. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites. Sci. Rep. 6, 32913, doi: 10.1038/srep32913 (2016).

Fotos stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2017/2017-084-1.jpg
Ein internationales Forschungsteam hat ein Nanohybridmaterial entwickelt mit einer faszinierenden Struktur von Tetrapoden. Foto: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-2.jpg
In der Sputteringanlage der Technischen Universität Moldau werden Mikrotetrapoden aus Aerographit und Kohlenstoff mit noch kleineren Nanotetrapoden aus Zinkoxid besetzt.
Foto: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-3.jpg
Aufnahmen aus dem Rasterelektronenmikroskop zeigen die Gestalt der Tetrapoden vor (b) und nach (c) der Behandlung mit dem Sputteringverfahren.
Bild: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-4.jpg
Das Streuungsverhalten des neu geschaffenen Nano-Hybridmaterials, dargestellt mittels grünen Laserpointers, mindert die Intensität des Laserlichts ab und macht es so einfacher für die Industrie nutzbar.
Foto: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-5.jpg
Dr. Yogendra Mishra von der Universität Kiel zeigt die Lichtstreuung des neuen Nano-Hybridmaterials aus Kohlenstoff und Zinkoxid.
Foto: Julia Siekmann, CAU

http://www.uni-kiel.de/download/pm/2017/2017-084-6.jpg
Das Licht des Laserpointers wird über das gesamte Material gestreut, anstatt sich nur auf einen Punkt zu konzentrieren.
Foto: Julia Siekmann, CAU

Kontakt:
Dr. habil. Yogendra Kumar Mishra
Arbeitsgruppe Funktionale Nanomaterialien
Technische Fakultät
Telefon: +49 431 880-6183
E-Mail: ykm@tf.uni-kiel.de

Professor Ion Tiginyanu
Director of the National Centre for Materials Study and Testing
Technical University and Academy of Sciences of Moldova
Telefon: +373 22 27 40 47
E-Mail: tiginyanu@asm.md

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Redaktion: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: instagram.com/kieluni

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2017-084-laser

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing
08.07.2020 | Universität Basel

nachricht Graphen: Auf den Belag kommt es an
08.07.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing

08.07.2020 | Materialwissenschaften

Graphen: Auf den Belag kommt es an

08.07.2020 | Materialwissenschaften

Enzyme als Doppelagenten: Neuer Mechanismus bei der Proteinmodifikation entdeckt

08.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics