Die DNA verrät ihre Geheimnisse

Seit mehr als zehn Jahren versuchen Wissenschaftler, die elektronische Struktur der DNA zu entschlüsseln, oder genauer: herauszufinden, wie die Elektronen in den molekularen Orbitalen der berühmten Doppelhelix verteilt sind. Ein Einblick in die elektronische Struktur der DNA kann zum Beispiel helfen zu verstehen, wie diese sich verhält, wenn sie durch ultraviolette Strahlung beschädigt wird. Aber auch Anwendungen im Bereich der Nanotechnologie profitieren von solchen Erkenntnissen.

Eine Forschergruppe, die von Prof. Gianaurelio Cuniberti, Professor für Materialwissenschaften und Nanotechnologie an der TU Dresden, koordiniert wird, hat nun erste Erfolge bei der Erforschung der Nukleinsäuremoleküle bei einer Temperatur von minus 195 Grad Celsius erbracht. Zusammengearbeitet hat das Team dabei mit der Hebräischen Universität Jerusalem, der Universität Tel Aviv, dem Materialforschungsinstitut INFM-CNR in Modena und dem interuniversitären Konsortium CINECA in Bologna. Ihre Studie, publiziert im renommierten Fachblatt Nature Materials, nutzt ein Rastertunnelmikroskop, mit dem es möglich ist, einerseits den Strom zu messen, der durch das auf einem Goldsubstrat aufgebrachte Molekül fließt, und gleichzeitig die Anordnung der elektronischen Orbitale zu beobachten.

Dank der theoretischen Berechnungen, die auf der Lösung bestimmter Quantengleichungen fußen, war es den Wissenschaftlern möglich, die elektronische Struktur zu bestimmen, die am ehesten mit dem gemessenen Strom übereinstimmt, und dann herauszufinden, welche Elemente der Doppelhelixstruktur dazu beitragen, dass Elektronen durch die Doppelhelix wandern können. Um die Störungen gering zu halten, die durch Verunreinigungen und andere Störungen verursacht werden, haben die Forscher ein langgezogenes und etwas vereinfachtes Molekül benutzt, das sich nur aus den beiden Nukleinbasen Guanin und Zytosin zusammensetzt.

Das Potenzial dieser Entdeckung ist enorm: das Verständnis der elektronischen Eigenschaften der DNA ist die Voraussetzung für eine unendliche Anzahl weiterer Anwendungen in Bereichen, die von der Biochemie bis zur Nanotechnologie reichen. Beispielsweise könnte es nun möglich sein, genau zu erklären, wie ultraviolette Strahlung die DNA angreift, wie genetische Mutationen so genannte „freie Radikale“ produzieren, und vor allem wie das Molekül darauf reagiert: DNA-Reparaturen treten tatsächlich durch die Weitergabe elektrischer Ladung innerhalb der Doppelhelix auf, die sich in veränderten Molekülbindungen niederschlägt. Auf dem Feld der Nano-Bio-Elektronik profitiert vor allem die Forschung an elektrischen Schaltkreisen, die sich aus biologischen Molekülen zusammensetzen, von den neuen Erkenntnissen. DNA wird dort als ein mögliches Gerüst für winzige Nanodrähte angesehen, um mit ihnen „biologische Chips“ entwickeln zu können, die viel kleiner als die heutigen Bauteile auf Siliziumbasis sind.

Diese Forschungsaufgaben werden in Dresden am Max-Bergmann-Zentrum für Biomaterialien des Instituts für Materialwissenschaften der TU Dresden fortgeführt, wo Prof. Cuniberti seit Oktober 2007 die Professur für Materialwissenschaften und Nanotechnik leitet.

Weitere Informationen: Prof. Dr. Gianaurelio Cuniberti, Tel. 0351 463-31420, E-Mail: office@nano.tu-dresden.de

Media Contact

Kim-Astrid Magister idw

Weitere Informationen:

http://nano.tu-dresden.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer