Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Kristall schluckt Hyperschall

09.11.2006
Mainzer Max-Planck-Forscher stellen erstmals Kristalle her, die mit Schallwellen und Licht gleichzeitig wechselwirken können

Eine Glasplatte, Silikonöl und Polystyrolkügelchen - aus diesen einfachen Komponenten haben Forscher des Max-Planck-Instituts für Polymerforschung in Mainz einen Kolloidkristall hergestellt, der Hyperschallwellen blockiert.


Auf dieser elektronenmikroskopischen Aufnahme der Kolloidkristalloberfläche erkennt man die gleichmäßig nebeneinander angeordneten Polystyrolkugeln, deren Durchmesser 256 Nanometer beträgt. Bild: Max-Planck-Institut für Polymerforschung

Die Struktur des Materials ist so fein, dass es nicht nur mit hochfrequenten Schallwellen sondern auch mit Lichtwellen wechselwirkt. Den Forschern gelang es außerdem erstmals, mittels einer speziellen hochauflösenden Spektroskopiemethode Lage und Breite des Frequenzintervalls, das der Kristall schluckt, sehr genau zu vermessen. Materialien dieser Art könnte man verwenden, um Schallschilder, akustische Superlinsen oder Wärmebarrieren zu konstruieren (Nature Materials, online: 3. September 2006).

Ein Fenster, das das Rauschen der Autobahn konsequent aussperrt aber Vogelgezwitscher rein lässt - phononische Kristalle könnten das möglich machen. Solche Kristalle blockieren Schallwellen mit bestimmten Frequenzen, andere Frequenzen durchdringen das Material mühelos. Der Frequenzbereich, der den Kristall nicht passieren kann, heißt Bandlücke.

Bisher existierten lediglich phononische Kristalle mit Bandlücken für hörbaren Schall (20Hz bis 20 kHz) oder Ultraschall (20 kHz bis 100 MHz). Nun stellten Mainzer Forscher erstmals einen Kristall her, der Hyperschallwellen reflektiert, also Frequenzen im Gigahertzbereich. Da er aus unzähligen nanometergroßen Teilchen besteht, sogenannten Kolloiden, bezeichnet man ihn als Kolloidkristall. Damit erzielten die Wissenschaftler einen wichtigen Fortschritt bei der Erforschung von Bandlücken. "Viele der Effekt in solchen Materialien sind noch unerforscht", sagt Dr. Ulrich Jonas, der Projektleiter, "wir dringen hier in physikalisches Neuland vor."

Denn die kurzen Hyperschallwellen haben interessante Eigenschaften, die sie deutlich von ihren langen Verwandten unterscheiden. Anders als Schall- und Ultraschallwellen, die immer aus einer externen Quelle stammen, gehen Hyperschallwellen unter anderem aus der Wärmebewegung der Atome in dem Kristall selber hervor. Selbst Isoliermaterialien übertragen Wärme über akustische Wellen im Gigahertzbereich. Lässt sich die Bewegung dieser Wellen beeinflussen, wirkt sich das direkt auf die Wärmeleitfähigkeit aus. Diesen Effekt könnten hocheffektive Wärmebarrieren ausnutzen.

Außerdem verfügen Kristalle, die im Gigahertzbereich absorbieren, über Bandlücken für Licht und Schall. Man kann also gleichzeitig steuern, wie sich akustische und optische Wellen im Material fortsetzen und miteinander wechselwirken. Diese einzigartige Eigenschaft erlaubt es möglicher Weise, optische Modulatoren oder, etwas weiter in die Zukunft gedacht, akustische Laser zu entwickeln.

In phononischen Kristallen wechseln sich gleichmäßig Abschnitte mit hoher Elastizität und niedriger Elastizität ab. Der Schall ist so mal schneller und mal langsamer - stop and go für die Schallwellen. Das Material blockt Schallwellen ab, deren Wellenlänge etwa so lang ist, wie die Bereiche verschiedener Elastizität im Kristall voneinander entfernt sind. Für Bandlücken im Hyperschallbereich mit sehr kurzen Wellenlängen müssen Wissenschaftler deshalb ein periodisches Muster im Nanometermaßstab erzeugen, während für hörbaren Schall zentimetergroße und für Ultraschall millimeter- bis einige zehn mikrometergroße Strukturen reichen.

Im phononischen Kristall der Mainzer Forscher bilden nanometergroße Polystyrolkugeln (aus Polystyrol besteht auch Styropor) und Silikonöl die beiden Phasen mit unterschiedlichen Schallgeschwindigkeiten. Die winzigen Kugeln ordnen sich von selber regelmäßig auf einer Glasplatte an, während die Forscher sie aus einer wässrigen Suspension der Polystyrolkugeln ziehen. Anschließend trocknen die Wissenschaftler die Probe und benetzen sie mit Silikonöl. Indem sie die Kugelgröße oder die Benetzungsflüssigkeit verändern, können sie die Lage und Breite der Bandlücke gezielt einstellen.

Um die Bandlücke zu vermessen, verwendeten die Wissenschaftler erstmals ein relativ neu entwickeltes Verfahren: die hochauflösende Brillouin-Spektroskopie, die auf der Streuung von Licht beruht. Mit dieser Technik konnten sie in außergewöhnlich hoher Auflösung messen, welche Schallwellen sich im nanostrukturierten Kristall ausbreiten können und welche nicht. Die hohe Messgenauigkeit schafft auch die Voraussetzung, um akustische Superlinsen für die hochauflösende Ultraschall-Bildgebung herzustellen.

Die Forscher haben also ein neuartiges Material mit einer Bandlücke im Hyperschall entwickelt und diese Bandlücke dazu noch mit bislang ungekannter Präzision vermessen. "Wir versuchen nun auch das Kugelmaterial zu variieren und mehrere Bandlücken herzustellen" gibt Dr. Jonas einen Ausblick, "damit wollen wir das Material an denkbare technische Anwendungen anpassen."

Originalveröffentlichung:

W. Cheng, J. Wang, U. Jonas, G. Fytas, N. Stefanou,
Observation and Tuning of Hypersonic Bandgaps in Colloidal Crystals
Nature Materials, online: 3. September 2006
E. L. Thomas, T. Gorishnyy, Maldovan, M.
Colloidal Crystals go Hypersonic
Nature Materials, Oktober 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik
17.10.2018 | Max-Planck-Institut für Polymerforschung

nachricht Tiefsee ergründen – erstmalige LIBS-Messung bei 600 bar
16.10.2018 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics