Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augsburger Rasterkraftmikroskopie-Experte Gießibl erhält den Rudolf-Kaiser-Preis 2001

14.12.2001


Erhält nach dem Nanowissenschaftspreis 2000 jetzt den Rudolf-Kaiser-Preis 2001: Der Augsburger Experimentalphysiker PD Dr. Franz J. Gießibl
Foto: Fred Schöllhorn


Gießibl und seinen Kollegen gelang es erstmals, Strukturen innerhalb einzelner Atome mittels eines Mikroskops sichtbar zu machen und die Elektronenwolken eines Atoms direkt abzubilden


Auszeichnung würdigt herausragende Einzelleistungen, die "nicht mit ’großen Maschinen’ erzielt wurden" -


Wie der Stifterverband für die Deutsche Wissenschaft gestern mitteilte, erhält in diesem Jahr der Augsburger Experimentalphysiker Priv. Doz. Dr. Franz J. Gießibl den Rudolf-Kaiser-Preis 2001. Die seit 1989 jährlich vergebene und mit DM 60.000,- dotierte Auszeichnung würdigt jeweils das bisherige Gesamtwerk eines deutschen Nachwuchswissenschaftler auf dem Gebiet der experimentellen Physik. Als Preisträger kommt in Frage, wer "mehrere wissenschaftlich gute Arbeiten publiziert [hat ...], die nicht mit Hilfe ’großer Maschinen’ - d. h. Großgeräten wie beispielsweise Teilchenbeschleunigern - in Teamarbeit, sondern überwiegend als Einzelleistungen geschaffen wurden. Zumindest eine dieser Arbeiten muss sich durch besondere Qualität auszeichnen. Er darf noch keinen Ruf auf einen Lehrstuhl erhalten haben."

Der 39-jährige Augsburger Experimentalphysiker Franz J. Gießibl, der zunächst an der Fachhochschule München Feinwerktechnik und dann an der TU München sowie an der ETH Zürich Physik und Mathematik studierte, promovierte 1992 an der LMU München mit einer Arbeit über "Rasterkraftmikroskopie und Rastertunnelmikroskopie bei 4.2 K im Ultrahochvakuum". Parallel zum Studium arbeitete er u. a. am Baustoffinstitut der TU München, am Max-Planck-Institut für Extraterrestrische Physik in Garching, im IBM Forschungslabor in Rüschlikon, am Walter-Schottky-Institut für Halbleiterphysik der TU München und in der IBM Physikgruppe München. Nach der Promotion war er Projektleiter bei Park Scientific Instruments Inc. in Sunnyvale, Kalifornien, und schließlich Senior Associate bei McKinsey & Company Inc. in München, bis er im Oktober 1996 an den Augsburger Lehrstuhl für Experimentalphysik VI/Elektronische Korrelationen und Magnetismus (Prof. Dr. Jochen Mannhart) wechselte, um hier die Arbeitsgruppe Rastersondenmikroskopie aufzubauen sowie primär im Bereich der atomaren Auflösung beim AFM (Atomic Force Microscopy/Rasterkraftmikroskop) zu forschen. "Progress in Atomic Force Microscopy" war auch das Thema der Studie, mit der Gießibl im Juli 2001 an der Universität Augsburg habilitierte.

BESSERES VERSTÄNDNIS DES VERHALTENS VON ELEKTRONEN IN FESTKÖRPERN

Hier handle es sich zwar nicht um seine am meisten zitierte Publikation, meint Gießibl, aber der in der Science-Ausgabe vom 21. Juli 2000 vermeldete Erfolg, dass es ihm und seinen Kollegen am Augsburger Lehrstuhl für Experimentalphysik VI erstmals gelungen war, Strukturen innerhalb einzelner Atome mittels eines Mikroskops sichtbar zu machen und die Elektronenwolken eines Atoms direkt abzubilden, habe wohl maßgeblich dazu beigetragen, dass er zum diesjährigen Rudolf-Kaiser-Preisträger gekürt worden ist. Denn das unter Federführung Gießibls entwickelte Mikroskop und das mit diesem Mikroskop ermöglichte neuartige Verfahren lassen erwarten, dass es in Zukunft gelingen wird, die Elektronenwolken von einer Vielzahl von Atomen in verschiedenartigen Kristallen abzubilden und so ein verbessertes Verständnis des Verhaltens von Elektronen in Festkörpern zu erzielen.

ESSENTIELLE BEITRÄGE ZUR RASTERKRAFTMIKROSKOPIE

Gießibls experimentelle und theoretische Beiträge zur Rasterkraftmikroskopie und insbesondere das von ihm entwickelte Verfahren, chemisch reaktionsfähige Oberflächen mit atomarer Auflösung abzubilden, waren es im übrigen auch, die ihm im Frühjahr 2000 bereits auf der Tagung der Deutschen Physikalischen Gesellschaft (DPG) den mit DM 10.000,- dotierten Nanowissenschaftspreis 2000 einbrachten, der, gefördert durch das Bundesministerium für Bildung und Forschung, vom Kompetenzzentrum Nanoanalytik verliehen wird.

INDIVIDUELLE GENIALITÄT ALS STÄRKSTER GARANT PHYSIKALISCHEN FORTSCHRITTS

Aus der DPG rekrutieren sich auch die Mitglieder des Beirats der Rudolf-Kaiser-Stiftung, der zusammen mit den Angehörigen des Stiftungskuratoriums über die Vergabe des Rudolf-Kaiser-Preises entscheidet. Der Stifter selbst, der 1923 in Nürnberg geborene und an der TU München habilitierte Physiker Rudolf Kaiser, fühlte sich bei seinen Tätigkeiten in der universitären Forschung, in der industriellen Praxis und beim Deutschen Patentamt wie beim Bundespatentgericht der wissenschaftlichen Grundlagenforschung und der praxisrelevanten Anwendung technologischer Errungenschaften gleichermaßen verpflichtet. Seine breiten Erfahrungen in beiden Bereichen brachten ihn zu der Überzeugung, dass es bei aller Bedeutung von Großgeräten und Teamarbeit von zentraler Bedeutung sei, Anreize für hervorragende Einzelleistungen zu geben, da individuelle Genialität und Zielstrebigkeit der stärkste Garant des Fortschritts in der Physik bleiben würden.

Die Aushändigung des Rudolf-Kaiser-Preises 2001 an Priv. Doz. Dr. Franz J. Gießibl wird voraussichtlich im März 2002 an der Universität Augsburg stattfinden.

KONTAKT UND WEITERE INFORMATIONEN:

Priv. Doz. Dr. Franz J. Gießibl


Lehrstuhl für Experimentalphysik VI/EKM (Prof. Dr. Jochen Mannhart)
Institut für Physik der Universität Augsburg
86135 Augsburg

Telefon: +49-821-598-3675
Telefax.: +49-821-598-3652
E-Mail: franz.giessibl@physik.uni-augsburg.de

Stifterverband für die Deutsche Wissenschaft
- Stiftungsverwaltung -
Dr. Kai de Weldige
Barkhovenallee 1
45239 Essen
Telefon: +49-201-8401-198
Telefax: +49-201-8401-301
E-Mail: kai.deweldige@stifterverband.de

Klaus P. Prem | idw
Weitere Informationen:
http://idw-online.de/public/zeige_pm.html?pmid=19083
http://idw-online.de/public/zeige_pm.html?pmid=23045
http://www.Physik.Uni-Augsburg.DE/exp6/index.shtml

Weitere Berichte zu: Atom Experimentalphysik Mikroskop Physik Rudolf-Kaiser-Preis

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Feuer und Flamme für coole Funktionen – funktionelle Oberflächenbeschichtung von Rollenware
21.11.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen
16.11.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Diode für Magnetfelder

Innsbrucker Quantenphysiker haben eine Diode für Magnetfelder konstruiert und im Labor getestet. Das von den Forschungsgruppen um den Theoretiker Oriol Romero-Isart und den Experimentalphysiker Gerhard Kirchmair entwickelte Bauelement könnte eine Reihe neuer Anwendungen ermöglichen.

Elektrische Dioden sind wichtige elektronische Bauteile, die elektrischen Strom in eine Richtung leiten, die Stromleitung in der anderen Richtung aber...

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Millimeterwellen für die letzte Meile

ETH-Forscher haben einen Modulator entwickelt, mit dem durch Millimeterwellen übertragene Daten direkt in Lichtpulse für Glasfasern umgewandelt werden können. Dadurch könnte die Überbrückung der «letzten Meile» bis zum heimischen Internetanschluss deutlich schneller und billiger werden.

Lichtwellen eigenen sich wegen ihrer hohen Schwingungsfrequenz hervorragend zur schnellen Übertragung von Daten.

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Podiumsdiskussion zur 11. Internationalen MES-Tagung in Hannover hochkarätig besetzt

21.11.2018 | Veranstaltungen

Hüftprothese: Minimalinvasiv oder klassisch implantieren? Implantatmodell wichtiger als OP-Methode

21.11.2018 | Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Blick auf molekulare Prozesse

21.11.2018 | Physik Astronomie

Wechsel zu Carbon Infrarot-Strahlern von Heraeus halbiert die Trocknungszeit für Siebdruck auf T-Shirts

21.11.2018 | Energie und Elektrotechnik

Wie aus Staub Planeten entstehen

21.11.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics