Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Spezialpapier gegen elektromagnetische Felder

23.05.2006
Forschungsprojekt am Fachgebiet Glas- und Keramiktechnologie der TU Ilmenau

Die Papiertechnische Stiftung in München und das Fachgebiet Glas- und Keramiktechnologie des Institutes für Werkstofftechnik der TU Ilmenau entwickeln und erproben Spezialpapiere, die in der Lage sind, hochfrequente elektromagnetische Strahlung vorrangig im Bereich von 1 GHz bis 10 GHz zu absorbieren. Das Forschungsprojekt ZUTECH wird von gefördert von der Arbeitsgemeinschaft industrieller Forschung und dem Bundeswirtschaftsministerium.

Hochfrequente elektromagnetische Felder sind als Folge notwendiger Kommunikationstechniken (Sattelitenfernsehen, Mobilfunk, WLAN - Technologien), Messtechniken (Radar für Verkehrs- und Luftüberwachung) und nicht vermeidbarer Abstrahlungen von Mikrowellentechniken in der Umwelt in unterschiedlicher Intensität und Frequenz vorhanden. Diesen Feldern sind Menschen, Tiere und technische Systeme ausgesetzt. Zu ihrem Schutz sind geeignete Abschirmmaterialien erforderlich.

Die Abschirmwirkung der Spezialpapiere wird mit maßgeschneidert modifizierten, nanoskaligen Bariumhexaferritpulvern realisiert, die im Rahmen eines bereits laufenden BMBF-Projektes im Wachstumskern ALCERU-HighTech entwickelt werden. Im Projekt sind stabile und streichfähige Slurries (spezielle Schlicker; Feststoff-Fluid-Gemische) herzustellen und etablierte Papierbeschichtungsverfahren zur Beschichtung von Rohpapieren mit diesen Slurries anzupassen.

Papiere dieser Art sind bisher auf dem Markt nicht vorhanden und stellen eine Erweiterung der Produktpalette funktionaler Papiere dar.

Bislang verfügbare Abschirmmaterialien sind u.a. Drahtgewebe, metallgefüllte Lacke, leitfähige Klebebänder, edelmetallbeschichtete Folien und metallisch beschichtete Abschirmtapeten. Bei Verwendung dieser Abschirmmaterialien bleiben die elektromagnetischen Felder jedoch erhalten. Es entstehen sogar neue Reflexionen und Interferenzen, da die Abschirmung mit elektrisch leitfähigen Materialien hauptsächlich auf Reflexionsdämpfung beruht. Weiterhin müssen die elektrisch leitfähigen Abschirmmaterialien bei Auskleidungen von Räumen, Anlagen und Geräten aus Sicherheitsgründen zum Potenzialausgleich immer zusätzlich geerdet werden und/oder einen Berührungsschutz besitzen.

Kontakt/Information:
Dr. Bernd Halbedel
Glass and Ceramic Technology Group
Inter-faculty Institute of Materials Science
Faculty of Mechanical Engineering
Technische Universität Ilmenau
Gustav-Kirchhoff-Strasse 6
D-98693 Ilmenau, Germany
Phone:+49(0)3677-69-2784, Fax: +49(0)3677-69-1436
e-mail:bernd.halbedel@tu-ilmenau.de

Wilfried Nax M.A. | idw
Weitere Informationen:
http://www.werkstoff.tu-ilmenau.de/

Weitere Berichte zu: Abschirmmaterial GHz Keramiktechnologie Spezialpapier

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Recyclingfähige, formflexible Wasserstofftanks für Brennstoffzellen-Autos
21.09.2018 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Neuer Super-Kunststoff mit positiver Ökobilanz
18.09.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics