Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Material für die Festplatten von morgen

19.12.2005


Heisenberg-Stipendiat Dr. Manfred Fiebig bei Justierungsarbeiten am Kurzpulslaser des Max-Born-Instituts in Adlershof. Mit den ultrakurzen Lichtpulsen untersucht Fiebig magnetische Materialien. Foto: Zens


Manfred Fiebigs Erkenntnisse machen den Weg frei für leistungsfähigere und langlebigere Festplatten oder Arbeitsspeicher sowie für bessere Speicherchips. Die Deutsche Physikalische Gesellschaft (DPG) hat dem 39-Jährigen Forscher aus dem Max-Born-Institut den Walter-Schottky-Preis für seine bahnbrechenden Arbeiten zu magnetoelektrischen Effekten in Multiferroika zuerkannt.


Dr. Manfred Fiebig (39) vom Max-Born-Institut wird mit dem Walter-Schottky-Preis 2006 der Deutschen Physikalischen Gesellschaft (DPG) ausgezeichnet. Der Nachwuchspreis würdigt herausragende Beiträge zur Physik der kondensierten Materie. Durch seine "bahnbrechenden Arbeiten" zu magnetoelektrischen Effekten in Multiferroika habe Fiebig "die Relevanz dieser Materialien für Grundlagenforschung und Anwendungen aufgezeigt, indem er eine Methode zu ihrer spektroskopischen Charakterisierung entwickelte", so die DPG. Die Erkenntnisse des Physikers und seiner beteiligten Kollegen machen den Weg frei für leistungsfähigere und langlebigere Festplatten oder Arbeitsspeicher sowie für bessere Speicherchips. Der Preis ist mit 15.000 Euro dotiert und wird im März 2006 verliehen.

Fiebig und seinen Kollegen gelang erstmals der experimentelle Beweis dafür, dass elektrische und magnetische Eigenschaften von Multiferroika räumlich zusammenhängen. Eine Korrelation dieser Eigenschaften hatten Physiker lange vermutet. Fiebigs Team machte die Kopplung mit Laserlicht sichtbar. Für ihre Messungen verwendeten die Wissenschaftler infrarotes Laserlicht. Sie bestrahlten damit Yttriummanganit-Kristalle. Bei einem sehr geringen Teil des eingestrahlten Lichtes halbiert sich durch Kontakt mit den magnetisch oder elektrisch ausgerichteten Bereichen die Wellenlänge. Das austretende Licht ist grün. "Das kann man sich vorstellen wie in einem Westernfilm", erklärt Fiebig. Ein Scharfschütze schießt auf eine Blechbüchse, die fliegt in die Luft - und er trifft sie ein zweites Mal, so dass sie noch höher fliegt. Fiebig: "Wir schießen mit einem Laser auf unsere Probe und erhöhen das Energieniveau doppelt, dann messen wir das Licht, das die Probe abstrahlt, wenn die Atome in ihr ursprüngliches Niveau zurückfallen."


Eine extrem empfindliche Kamera nimmt dieses Licht auf. Aus der Analyse der unterschiedlichen Schwingungsrichtungen erhalten die Forscher Aufschluss über die magnetische und die elektrische Ausrichtung der verschiedenen Gebiete ("Domänen") im Kristall. Die Arbeiten wurden an der Universität Dortmund bei Prof. Dietmar Fröhlich in Kooperation mit Prof. Roman Pisarev (St. Petersburg) begonnen, dann aber im wesentlichen am Max-Born-Institut im Bereich von Prof. Thomas Elsässer zusammen mit Dr. Thomas Lottermoser durchgeführt.

In Adlershof hat der Heisenberg-Stipendiat Fiebig wesentlich leistungsfähigere Laser als anderswo zur Verfügung. Er und seine Kollegen erforschen damit die Grundlagen für Datenspeicher von morgen. Derzeit arbeiten die Computer mit ferromagnetischen Speicherelementen. Die Informationen sind über Magnetisierungen kodiert, die je nach Ausrichtung für Null oder Eins stehen. Ein Schreib- und Lesekopf kann die magnetischen Strukturen erzeugen und lesen. Dazu ist ein äußeres Magnetfeld notwendig. Manfred Fiebig wies nun nach, dass sich die magnetischen Strukturen auch mit elektrischen Feldern gezielt erzeugen und umorientieren lassen - und zwar bei ganz bestimmten Materialien, den "Multiferroika". Dabei handelt es sich Materialien, die mehrere Ordnungseigenschaften in sich vereinen, etwa den Ferromagnetismus mit der Ferroelektrizität. "Wenn es gelingt, Multiferroika praxistauglich zu machen, dann könnten wir auf wesentlich kleinerem Raum und viel schneller als bisher Daten speichern und wieder auslesen", sagt Fiebig. Noch ist das Zukunftsmusik, weil seine Versuche bei mehr als 260 Grad unter Null in einer Helium-Atmosphäre ablaufen. Multiferroika, die bei Raumtemperatur beschrieben und wieder ausgelesen werden können, sind allerdings in der Entwicklung.

Fiebig ist unterdessen dabei, seine Forschung zu erweitern. Er untersucht jetzt die Geschwindigkeit, mit der sich magnetische Domänen durch Anlegen eines elektromagnetischen Feldes ändern. "Das ist das Einzigartige am MBI", schwärmt Fiebig: "Ich habe meine Probe genommen, bin eine Etage tiefer gegangen und konnte dort im Labor zeitaufgelöste Aufnahmen machen." Die Ergebnisse weisen darauf hin, dass die Änderungen im Bereich von Pikosekunden ("zehn hoch minus zwölf" Sekunden) ablaufen. Ein grundlegendes Verständnis der Prozesse könne dazu führen, dass die Schaltzeiten in Rechnern kürzer und Schaltprozesse flexibler werden.

Weitere Informationen:
Manfred Fiebig
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Max-Born-Straße 2A
12489 Berlin
Tel: 030-6392-1404
Mail: fiebig@mbi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: DPG Festplatte Max-Born-Institut Multiferroika

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Recyclingfähige, formflexible Wasserstofftanks für Brennstoffzellen-Autos
21.09.2018 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Neuer Super-Kunststoff mit positiver Ökobilanz
18.09.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics