Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zauberkunststücke mit Gold und Glas

07.11.2005


Goldpartikel, deren Größe und Gestalt sich einstellen lässt, machen Gläser zu neuen Werkstoffen für optoelektronische Anwendungen.



Schon die alten Römer kannten ein Verfahren, um Gläser durch Zusatz von Gold zu färben. Die Gläser sind zunächst farblos und nehmen beim kontrollierten Erhitzen eine rubinrote Farbe an. Ursache für diese Färbung sind fein verteilte Goldcluster. Die Lichtabsorption beruht auf einer gemeinsamen Schwingung der Leitungselektronen aller Goldatome in solch einem Cluster, einer so genannten Plasmonschwingung. Durch Veränderungen von Größe, Form oder den elektrischen Eigenschaften der Umgebung der Partikel sollte sich die Frequenz der Schwingung und damit auch die Farbe des absorbierten Lichtes beeinflussen lassen. Auf diese Weise könnte man dann Materialien herstellen, die sich zum Einsatz in nanophotonischen Bauteilen eignen. Dazu gehören zum Beispiel winzige optoelektronische Schaltkreise oder optische Speicher.



Wie das gehen sollte, war bisher fraglich, denn die Chemie von Gold im Glas galt lange als Mysterium. Durch jetzt veröffentlichte Untersuchungen konnten K. Rademann und M. Eichelbaum in Zusammenarbeit mit der Bundesanstalt für Materialforschung und -prüfung (BAM) den Schleier um dieses Geheimnis ein wenig lüften. Dazu stellten sie zunächst Kalk-Natron-Silikat-Gläser her, die Goldtrichlorid enthielten. Diese Gläser bestrahlten sie fünf Minuten lang mit Synchrotronstrahlung. Synchrotronstrahlung ist äußerst energiereiches Licht von hoher Intensität. Sie entsteht, wenn Elektronen stark beschleunigt werden - im Synchrotron erreichen sie beinahe Lichtgeschwindigkeit - und dann von einem Magneten abgelenkt werden.

Das Synchrotronlicht bewirkte die photochemische Reduktion der dreiwertigen Gold-Ionen zu elementarem Gold und damit eine gleichmäßige bräunliche Färbung in den bestrahlten Arealen der Gläser. Diese wurden nun über längere Zeit (30-45 Minuten) auf über 550 °C erhitzt. Dabei entwickelte sich die für die Plasmonschwingung charakteristische rote Farbe - ein Hinweis auf das Zusammenwachsen von Goldclustern mit einem Radius zwischen ca. 3 und ca. 6 nm, abhängig von der Dauer der Behandlung und der gewählten Temperatur. Mit steigender Größe der Goldpartikel beobachteten die Forscher eine Rotverschiebung der Plasmonschwingung, also eine Verschiebung in längerwellige Bereiche des Spektrums.

Durch schlichtes Erhitzen lässt sich so die Größe von Goldpartikeln in vorher mit Licht aktivierten Gläsern und damit die Absorptionswellenlänge der Plasmonschwingung einstellen. Dies ist eine Voraussetzung für ihren Einsatz als nanoskalige Bauteile von optoelektronischen Schaltkreisen.

Autor: Klaus Rademann, Humboldt-Universität zu Berlin (Germany), http://www.chemie.hu-berlin.de/agrad/index.html

Angewandte Chemie: Presseinfo 44/2005

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.chemie.hu-berlin.de/agrad/index.html
http://presse.angewandte.de

Weitere Berichte zu: Plasmonschwingung Schaltkreis Schwingung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Knochen als Vorbild: Leichter Metallschaum wird mit Beschichtung beinhart – hält Explosionen stand
14.03.2019 | Universität des Saarlandes

nachricht Neue Methode macht Bestimmung des cw-Hintergrunds bei gepulsten Lasern zuverlässiger
14.03.2019 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungsnachrichten

Mit dem Forschungsflugzeug ins ewige Eis - Meteorologen starten Messkampagne

20.03.2019 | Geowissenschaften

Optischer Sensor soll Pflanzenzüchtung beschleunigen

20.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics