Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zauberkunststücke mit Gold und Glas

07.11.2005


Goldpartikel, deren Größe und Gestalt sich einstellen lässt, machen Gläser zu neuen Werkstoffen für optoelektronische Anwendungen.



Schon die alten Römer kannten ein Verfahren, um Gläser durch Zusatz von Gold zu färben. Die Gläser sind zunächst farblos und nehmen beim kontrollierten Erhitzen eine rubinrote Farbe an. Ursache für diese Färbung sind fein verteilte Goldcluster. Die Lichtabsorption beruht auf einer gemeinsamen Schwingung der Leitungselektronen aller Goldatome in solch einem Cluster, einer so genannten Plasmonschwingung. Durch Veränderungen von Größe, Form oder den elektrischen Eigenschaften der Umgebung der Partikel sollte sich die Frequenz der Schwingung und damit auch die Farbe des absorbierten Lichtes beeinflussen lassen. Auf diese Weise könnte man dann Materialien herstellen, die sich zum Einsatz in nanophotonischen Bauteilen eignen. Dazu gehören zum Beispiel winzige optoelektronische Schaltkreise oder optische Speicher.



Wie das gehen sollte, war bisher fraglich, denn die Chemie von Gold im Glas galt lange als Mysterium. Durch jetzt veröffentlichte Untersuchungen konnten K. Rademann und M. Eichelbaum in Zusammenarbeit mit der Bundesanstalt für Materialforschung und -prüfung (BAM) den Schleier um dieses Geheimnis ein wenig lüften. Dazu stellten sie zunächst Kalk-Natron-Silikat-Gläser her, die Goldtrichlorid enthielten. Diese Gläser bestrahlten sie fünf Minuten lang mit Synchrotronstrahlung. Synchrotronstrahlung ist äußerst energiereiches Licht von hoher Intensität. Sie entsteht, wenn Elektronen stark beschleunigt werden - im Synchrotron erreichen sie beinahe Lichtgeschwindigkeit - und dann von einem Magneten abgelenkt werden.

Das Synchrotronlicht bewirkte die photochemische Reduktion der dreiwertigen Gold-Ionen zu elementarem Gold und damit eine gleichmäßige bräunliche Färbung in den bestrahlten Arealen der Gläser. Diese wurden nun über längere Zeit (30-45 Minuten) auf über 550 °C erhitzt. Dabei entwickelte sich die für die Plasmonschwingung charakteristische rote Farbe - ein Hinweis auf das Zusammenwachsen von Goldclustern mit einem Radius zwischen ca. 3 und ca. 6 nm, abhängig von der Dauer der Behandlung und der gewählten Temperatur. Mit steigender Größe der Goldpartikel beobachteten die Forscher eine Rotverschiebung der Plasmonschwingung, also eine Verschiebung in längerwellige Bereiche des Spektrums.

Durch schlichtes Erhitzen lässt sich so die Größe von Goldpartikeln in vorher mit Licht aktivierten Gläsern und damit die Absorptionswellenlänge der Plasmonschwingung einstellen. Dies ist eine Voraussetzung für ihren Einsatz als nanoskalige Bauteile von optoelektronischen Schaltkreisen.

Autor: Klaus Rademann, Humboldt-Universität zu Berlin (Germany), http://www.chemie.hu-berlin.de/agrad/index.html

Angewandte Chemie: Presseinfo 44/2005

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.chemie.hu-berlin.de/agrad/index.html
http://presse.angewandte.de

Weitere Berichte zu: Plasmonschwingung Schaltkreis Schwingung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht TFK entwickelt Herstellungsverfahren für großflächige Metalldrahtnetze zum Einsatz in der Raumfahrt
09.07.2020 | Hochschule Hof - University of Applied Sciences

nachricht Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing
08.07.2020 | Universität Basel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics