Neue Nano-Werkstoffe aus der Mikrowelle

Materialwissenschaftler und Chemiker der Universität Jena helfen Thüringer Industrie bei Entwicklung von neuem Herstellungsverfahren für Faserverbundwerkstoffe


Flugzeug- und Autobauteile werden aus ihnen gefertigt, Ski und Rennrodler, aber auch Komponenten von Magnetresonanztomographen bestehen aus ihnen. Die Rede ist von Faserverbundwerkstoffen (Composites). Diese leichten und stabilen Werkstoffe bestehen zumeist aus hochfesten Glas- oder Carbonfasern, die in Kunstharz eingebettet werden. Das Prinzip ist alt: Eisenstangen durchziehen den sonst spröden Beton, Strohfasern steigerten früher die Festigkeit von Lehmziegeln. Im Verkehrsflugzeugbau, z. B. beim neuen Airbus A380, hat der steigende Einsatz der faserverstärkten Kunststoffe zum Wettbewerbsvorteil der europäischen Industrie geführt. Das geringere Gewicht senkt die Kosten und steigert durch die Treibstoffersparnis die ökologische Verträglichkeit von Flug- und Fahrzeugen. Will man allerdings große Stückzahlen von Teilen aus Faserverbundwerkstoffen rasch, in Serie und mit gleichbleibender Qualität produzieren, erfordert dies neue Fertigungsverfahren. Das Thüringer Wirtschaftsministerium fördert daher bis zum Herbst 2006 die Arbeiten vom Materialwissenschaftlern und Chemikern der Universität Jena, die in Kooperation mit der Thüringer Firma Schmuhl ein neues Verfahren und neue Materialien zur Herstellung von Hochleistungsverbund-Bauteilen entwickeln. Insgesamt fließen im Rahmen des kürzlich gestartete Verbundprojektes 346.286 Euro an das Institut für Materialwissenschaft und Werkstofftechnologie (IMT) und das Institut für Organische Chemie und Makromolekulare Chemie der Friedrich-Schiller-Universität.

„Bisher musste immer die gesamte Werkzeugform erwärmt werden, da das eingeleitete Harz bei höheren Temperaturen aushärtet“, erklärt PD Dr. Jörg Bossert. Der Forscher vom Lehrstuhl für Materialwissenschaft will, um die Aushärtungszeit für große Teile zu verkürzen und Energie zu sparen, Mikrowellen einsetzen. Zur Steigerung der Festigkeit und der Oberflächenqualität sollen u. a. winzigste Nanopartikel aus Keramik in den Faserverbundwerkstoff eingearbeitet werden. Auch die Chemikerin Prof. Dr. Elisabeth Klemm wurde mit ins Boot geholt. Sie wird einen Polymerwerkstoff auf der Basis von Epoxyd-Systemen beisteuern, der diese Art der Aushärtung ohne Volumenminderung übersteht. „Die so hergestellten Teile sollen am Ende auch unter extremen klimatischen Bedingungen nicht spröde oder weich werden“, erläutert die Chemikerin das Ziel.

Kontakt:
PD Dr. Jörg Bossert
Institut für Materialwissenschaft und Werkstofftechnologie
der Universität Jena
Tel.: 03641 / 947733
E-Mail: joerg.bossert@uni-jena.de

Prof. Dr. Elisabeth Klemm
Institut für Organische Chemie und Makromolekulare Chemie
der Universität Jena
Tel.: 03641 / 948200
E-Mail: c9klel@rz.uni-jena.de

Media Contact

Stefanie Hahn idw

Weitere Informationen:

http://www.uni-jena.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer