Rezeptoren in der Maschinenhaut

Maschinen sind meist kostbare Investitionsgüter, die ohne Ausfälle laufen sollen. Um kritische Betriebszustände rechtzeitig zu erkennen, eignen sich Dünnschichtsensoren besonders. In Lagern rotierender Teile messen sie Temperaturen und mechanische Lasten. Solche „Rezeptoren“ sind auf der Hannover Messe in Halle 2 am Stand E30 zu sehen.

In fast allen Maschinen befinden sich Wälzlager, die erheblichen Lastschwankungen unterworfen sein können. Insbesondere bei Werkzeugmaschinen, die Bauteile schnell und präzise bearbeiten und die dauerhaft eingesetzt werden sollen, müssen Überlastungen solcher ausfallgefährdeten Maschinenteile vermieden werden. Steht die Anlage dennoch, können Regressansprüche gegen den Hersteller auftreten. Dann ist es wichtig, die Belastungsgeschichte der beschädigten Komponente nachweisen zu können.

Dazu müssen in den Lagern die mechanische Last, die Drehzahl und die Temperatur verfolgt werden. Letzteres übernehmen bisher Thermoelemente, die an den Lagerschalen angebracht sind. Doch sind sie noch nicht nahe genug an der Lauffläche der Wälzkörper, um das Temperaturprofil verlässlich genug erfassen zu können. Daher ist es ratsam, den Sensor in Dünnschichttechnologie aufzubauen und direkt in die Lauffläche zu integrieren. Ihre „Rezeptoren“ stellen Forscher vom Fraunhofer-Institut für Schicht- und Oberflächentechnik IST vom 11. bis 15. April auf der Hannover Messe vor. „Was das Reibungsverhalten und die sensorische Qualität angeht, setzen unsere für Temperatur und Kraft empfindlichen Schichtsysteme neue Maßstäbe“, weiß Holger Lüthje, Leiter der Gruppe Mikro- und Sensortechnologie. „Damit eröffnen sich vollkommen neue Anwendungsfelder, da erstmalig eine örtlich aufgelöste Messung direkt im Wälzkontakt möglich wird.“ Besonders wichtig ist, dass sich benachbarte Schichtmaterialien gut vertragen und diese wiederum zu den Werkstoffen von Wälzkörper und Lagerschale passen. Denn nur wenn die mechanischen Eigenschaften und die Haftung stimmen, kann später ein Abblättern im laufenden Lager verhindert werden.

Ihr multifunktionales Sensormaterial haben sich die Forscher unter der Marke DiaForce® schützen lassen. Es besteht aus amorphem, also nicht kristallinem Kohlenstoff. Das „Dia“ im Namen deutet jedoch an, dass ein Teil des Kohlenstoffs in diamantartiger Struktur vorliegt. Das Material ist extrem verschleißfest, reibungsarm und verfügt über sehr gute sensorische Eigenschaften für Kräfte, Drücke und Temperaturen.

Deren Werte werden über eine Veränderung des elektrischen Widerstands der Schicht gemessen. Bei fest installierten Maschinenteilen stellen Kabelverbindungen kein Problem dar. Für rotierende Lager hat ein Partner im BMBF-Projekt „Intelligente Spindeleinheit“ bereits ein funkbasiertes telemetrisches System entwickelt.

Media Contact

Dr. Johannes Ehrlenspiel idw

Weitere Informationen:

http://www.ist.fraunhofer.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer