Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligente Membranen, maßgeschneiderte Moleküle

05.04.2005


VolkswagenStiftung bewilligt rund 4,7 Millionen Euro für acht neue Vorhaben in den Materialwissenschaften

... mehr zu:
»Membran »Molekül »Nanometer »Nanopartikel

Materialien sollen leicht sein, Platz sparen, Umwelt und Energie schonen. Sie sollen optimale strukturelle und funktionelle Eigenschaften besitzen - sprich: Sie sollen möglichst viel können. Mit ihrer Förderinitiative "Komplexe Materialien: Verbundprojekte der Natur-, Ingenieur- und Biowissenschaften" regt die VolkswagenStiftung Wissenschaftler an, die traditionellen Grenzen der Werkstoffdisziplinen zu überschreiten, von Erkenntnissen und Erfahrungen anderer Gebiete einschließlich der Biowissenschaften zu profitieren und Materialien zu entwickeln, die den sich verändernden Anforderungen gerecht werden. Für vier neue - die wir Ihnen im Folgenden kurz vorstellen - und vier Fortsetzungsvorhaben bewilligte die Stiftung jetzt rund 4,7 Millionen Euro:

1. 652.700 Euro für das Vorhaben "Switchable intelligent nanoporous mem-branes based on block copolymers", das an der Universität Bayreuth bearbeitet wird von Professor Dr. Jürgen Köhler vom Lehrstuhl für Experimentalphysik IV, Professor Dr. Georg Krausch vom Lehrstuhl für Physikalische Chemie II und Professor Dr. Axel Müller vom Lehrstuhl für Makromolekulare Chemie II - sowie an der Universität Duisburg-Essen, Standort Essen, von Professor Dr. Mathias Ulbricht vom Lehrstuhl für Technische Chemie II.


2. 887.700 Euro für das Vorhaben "From molecule gated nanowires toward electron transport with single redox molecules". Die beteiligten Wissenschaftler sind Privatdozent Dr. Thomas Wandlowski vom Forschungszentrum Jülich GmbH, Institut für Schichten und Grenzflächen ISG 3; Professor Dr. Marcel Mayor vom Department of Chemistry der Universität Basel/Schweiz; Professor Dr. Nongjian Tao vom Department of Electrical Engineering der Arizona State University, Tempe/USA - und Dr. Dirk Mayer, der ebenfalls am Forschungszentrum Jülich GmbH forscht, dort am Institut für Bio- und Chemosensoren ISG 2.

3. 760.400 EUR für das Vorhaben "Cluster-jet addressing of nano-particles to provide functional structures". An der Universität Bochum sind Dr. Jan Meijer vom Zentralen Labor für Ionenstrahlen und radioaktive Nuklide und Dr. Dirk Reuter vom Lehrstuhl für Angewandte Festkörperphysik beteiligt. An der Universität Duisburg-Essen, Standort Duisburg, ist in das Projekt integriert Dr. Hartmut Wiggers vom Institut für Verbrennung & Gasdynamik, an der Universität Kassel Dr. Ivo Rangelow vom Institut für Technische Physik, AG Mikrostrukturierung.

4. 465.000 EUR für das Vorhaben "Learning from diatoms: new synthetic concepts for the formation of highly ordered silica structures at ambient conditions". Die beteiligten Forscher sind Professorin Dr. Claudia Steinem vom Institut für Analytische Chemie, Chemo- und Biosensorik der Universität Regensburg, Professor Dr. Armin Geyer vom Fachbereich Chemie der Universität Marburg und Professor Dr. Manfred Sumper vom Institut für Biochemie, Genetik und Mikrobiologie der Universität Regensburg.

Es folgen Informationen zu diesen vier Kooperationsvorhaben; im Anschluss eine Kurzübersicht der weiteren neu bewilligten Projekte.

Zu 1: Intelligente Membranen

Natürliche Membranen haben eine faszinierende Eigenschaft: Sie lassen nur "ausgewählte" Stoffe durch. Wie "Türsteher" entscheiden molekulare Erkennungsmechanismen darüber, welche Stoffe passieren dürfen und welche nicht. Das Ziel der Arbeitsgruppen ist es, diese Fähigkeit natürlicher Membranen auf künstliche zu übertragen. Sie entwickeln dazu Membranen auf Polymerbasis mit Porengrößen zwischen zwei und 20 Nanometern, die sich von außen auf "Durchlass" oder "Nichtdurchlass" schalten lassen: etwa durch die Änderung der Temperatur, des pH-Werts oder auf Grund von Lichteinstrahlung. Bei der Herstellung profitieren die Wissenschaftler von den Selbstorganisationseigenschaften der so genannten binären und ternären Blockcopolymere. Sollten die Wissenschaftler Erfolg haben, eröffnen sich - vor allem im Vergleich zu anorganischen Membransystemen - ganz neue Möglichkeiten hinsichtlich Flexibilität und Durchlassvermögen.

Kontakte:

Universität Bayreuth
Experimentalphysik IV
Prof. Dr. Jürgen Köhler
Telefon: 09 21/55 - 4000
E-Mail: juergen.koehler@uni-bayreuth.de

Physikalische Chemie II
Prof. Dr. Georg Krausch
Telefon: 09 21/55 - 2750
E-Mail: georg.krausch@uni-bayreuth.de

Makromolekulare Chemie II
Prof. Dr. Axel Müller
Telefon: 09 21/55 - 3399
E-Mail: axel.mueller@uni-bayreuth.de

Universität Duisburg-Essen Standort Essen
Technische Chemie II
Prof. Dr. Mathias Ulbricht
Telefon: 02 01/1 83 - 3151
E-Mail: mathias.ulbricht@uni-essen.de

Zu 2: Elektronentransport mit einzelnen Molekülen

Ziel des deutsch-amerikanisch-schweizerischen Wissenschaftlerteams ist es, maßgeschneiderte Bio-Moleküle mit Metallelektroden zu verbinden, deren Abstand im Größenbereich einzelner Moleküle liegt. Wie lässt sich unter diesen - allein wegen der Größenordnung höchst komplizierten - Bedingungen eine funktionierende Kontaktierung realisieren? Wie kann man den Ladungstransport mit Hilfe einzelner Redox-Moleküle steuern? Diese Fragen zielen ins Herz des Forschungsthemas, nämlich auf die elektrischen Eigenschaften von anorganisch-molekularen Hybridstrukturen. Die Arbeitsgruppen, die in ihren jeweiligen Disziplinen über hervorragende Expertise verfügen, haben sich mit der Beantwortung dieser interdisziplinären Fragen ein ausgesprochen ehrgeiziges Ziel gesetzt. Um trotz vielfältiger Hürden verlässliche Ergebnisse für das noch junge Forschungsgebiet der molekularen Elektronik zu gewährleisten, werden sie ihr Thema von zwei verschiedenen Richtungen aus angehen. Ihr Projekt wird wichtige, neue Einblicke erlauben in chemische, physikalische und biologische Phänomene und in die Prozesse des Ladungstransports und der Selbstorganisation funktionaler Moleküle - und das im Größenbereich weniger Nanometer.

Kontakte:

Forschungszentrum Jülich GmbH
Priv.-Doz. Dr. Thomas Wandlowski
Telefon: 0 24 61/61 - 3462
E-Mail:Th.Wandlowski@fz-juelich.de

Dr. Dirk Mayer
Telefon: 0 24 61/61 - 4023
E-Mail: Dirk.Mayer@fz-juelich.de

Zu 3: Geschriebene Nanostrukturen

Die jungen Wissenschaftler dieses Forschungsverbunds wollen eine faszinierende neue Technik entwickeln, mit der sie auf Nanoskalen präzise strukturieren können. Das Besondere ihrer "Cluster-Jet"-Methode: Hier wird nicht chemisch, sondern rein physikalisch agiert - die Struktur wird mit Hilfe von Clustern gewissermaßen "geschrieben". Nanopartikel haben besondere chemische und elektrische Eigenschaften und dienen deshalb als Grundlage völlig neuer elektronischer Bauelemente, katalytischer Systeme oder von Oberflächenbeschichtungen. Für viele Anwendungen in Nano-Dimensionen reicht eine selbst organisierende Abscheidung - meist aus einer flüssigen Phase - aus. Kommt es allerdings darauf an, einzelne Partikel in Größenordnungen kleiner als zehn Nanometer exakt zu positionieren, dann helfen die bislang zur Verfügung stehenden Methoden nicht weiter. Gerade diese Anforderungen aber stellen sich mit Blick auf Zukunftstechnologien wie Quanten-Punkte, Ein-Elektron-Transistoren oder Quanten-Computer: Hierfür sind Techniken zur exakten Platzierung einzelner Nanopartikel nicht verfügbar. An diesem Punkt soll die "Cluster-Jet"-Methode zum Einsatz kommen. Sie basiert auf einer Quelle, mit der Nanopartikel aus der Gasphase hergestellt werden. Ziel der Methode ist es, einzelne Partikel mit einer räumlichen Auflösung von zehn Nanometern oder darunter auf einer vorstrukturierten Substratoberfläche anzuordnen.

Kontakte:

Universität Bochum
Zentrales Labor für Ionenstrahlen und radioaktive Nuklide
Dr. Jan Meijer
Telefon: 02 34/3 22 - 4238
E-Mail: jan.meijer@ruhr-uni-bochum.de

Angewandte Festkörperphysik
Dr. Dirk Reuter
Telefon: 02 34/32 - 25864
E-Mail: dirk.reuter@ruhr-uni-bochum.de

Universität Duisburg-Essen Standort Duisburg
Institut für Verbrennung & Gasdynamik
Dr. Hartmut Wiggers
Telefon: 02 03/3 79 - 3156
E-Mail: hartmut.wiggers@uni-duisburg.de

Universität Kassel
Institut für Technische Physik
Dr. Ivo Rangelow
Telefon: 05 61/8 04 - 4507
E-Mail: rangelow@hrz.uni-kassel.de

Zu 4: Silica aus dem Reagenzglas

Die Siliziumdioxid-Zellwände von Kieselalgen sind ein herausragendes Beispiel nanostrukturierter Materialien in der Natur. Bisher haben Wissenschaftler vergeblich versucht, die Komplexität dieser hierarchisch aufgebauten Biomaterialien als ebenso perfektes künstliches System nachzustellen. Dieser Herausforderung nehmen sich die beteiligten Forscher jetzt an und bedienen sich dazu des natürlichen Prinzips der Abscheidung. Ihr Ziel ist es, solche Siliziumstrukturen sowohl zwei- als auch dreidimensional auf innovative Weise herzustellen: im Reagenzglas, unter Umgebungsbedingungen und auf kurzer Zeitskala. Als Grundlage dient ihnen das molekulare Verständnis des in der Natur verwirklichten Prinzips der Silikat-assoziierten Verbindungen. Um entsprechende Strukturen zu erhalten, müssen sie zwei Komponenten zusammenbringen: Die eine katalysiert die Siliziumdioxid-Fällung, die andere dirigiert die Siliziumdioxid-Struktur. Besonders attraktiv für künftige Anwendungen: die Synthese von Siliziumdioxid bei niedrigen Temperaturen.

Kontakte:

Universität Regensburg
Institut für Analytische Chemie, Chemo- und Biosensorik
Prof. Dr. Claudia Steinem
Telefon: 09 41/9 43 - 4547
E-Mail: claudia.steinem@chemie.uni-regensburg.de

Institut für Biochemie, Genetik und Mikrobiologie
Prof. Dr. Manfred Sumper
Telefon: 09 41/9 43 - 2833
E-Mail: manfred.sumper@vkl.uni-regensburg.de

Universität Marburg
Fachbereich Chemie
Prof. Dr. Armin Geyer
Telefon: 0 64 21/2 82 - 2030
E-Mail: geyer@staff.uni-marburg.de

Dr. Christian Jung | idw
Weitere Informationen:
http://www.volkswagenstiftung.de

Weitere Berichte zu: Membran Molekül Nanometer Nanopartikel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics