Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremer Projekt zur umweltschonenden Produktion

18.07.2001


Das Institut für Umweltverfahrenstechnik der Bremer Uni hat jetzt gemeinsam mit dem Faserinstitut Bremen einen Forschungsauftrag des BMBF erhalten. Gefördert wird das Projekt vom BMBF mit vier Mio. Mark. Ziel dabei ist, neues biotechnologischen Wissen in ein nachhaltiges Produktionsverfahren umzusetzen, um so aus hochwertigen Naturfasern neue Materialien herzustellen.

Das Institut für Umweltverfahrenstechnik (IUV)) der Universität Bremen hat jetzt gemeinsam mit dem Faserinstitut Bremen e.V. (FIBRE) einen Forschungsauftrag des Bundesministeriums für Bildung und Wissenschaft (BMBF) im Rahmen des Förderprogramms "Nachhaltige BioProduktion" erhalten. Das Projekt mit dem Titel: "Neues nachhaltiges Produktionsverfahren zur Herstellung innovativer Materialien für technische Anwendungen und Textilien mittels biotechnologischer Modifikation von Naturfasern" umfasst ein Finanzvolumen von fünf Millionen Mark, von denen 80 Prozent vom BMBF übernommen werden. Unter der Leitung von Professor Norbert Räbiger (IUV) und der Projektkoordinierung durch das Faserinstitut Bremen werden sechs privatwirtschaftliche Unternehmen und vier Institute der Universitäten Bremen, Hamburg und Hamburg-Harburg interdisziplinär kooperieren.

Der Bremer Antrag wurde im Zusammenhang mit der Initiative "Integrierte Produktpolitik" der Umweltminister der Europäischen Union gestellt. Der nachhaltigen Produktion kommt in der kommenden Umweltgesetzgebung in Europa eine große Bedeutung zu. Dem bisher nur wenig ausgeschöpften Potenzial an nachwachsenden Rohstoffen gilt hierbei der besondere Augenmerk. Für modifizierte Naturfasern aus Bastfaserpflanzen zum Beispiel bei der Herstellung von Naturfaserverbundwerkstoffen und im Textilbereich bestehen zukunftsweisendes Marktchancen.

Technisch müssen die Naturfaserbündel aufgeschlossen werden, um die Feinheit und gute Faserhaftung entscheidend verbessern zu können. Dies wird gegenwärtig durch chemischen Aufschluss und chemische Modifizierung versucht, wobei große Abwassermengen und starke Laugen anfallen und die Umwelt belasten. Die durch einen mechanischen Aufschluss erzielbare Feinheit und Dehnung der Fasern genügt den Qualitätsansprüchen der Bekleidungsindustrie nicht. Dem gegenüber ist durch eine Anwendung neuisolierter Biokatalysatoren zweierlei möglich: eine ressourcenschonende Herstellung von sehr feinen Faserbündeln und die bedarfsgerechte Modifikation der Oberflächeneigenschaften von Naturfasern. Diese bilden die Grundlage, um im textilen und technischen Bereich innovative Materialien (etwa ökologisch interessante Verbundwerkstoffe mit spezifischen Eigenschaften) entwickeln zu können.

Ziel des Bremer Projektes ist es, neues biotechnologischen Wissen in ein nachhaltiges Produktionsverfahren umzusetzen, um so aus hochwertigen Naturfasern (später auch aus Roh- und Abfallstoffen) neue Materialien herzustellen. Außerdem soll ein Kompetenznetzwerk aufgebaut werden, an dem das BMBF großes Interesse hat.

Dieses Ziel lässt sich nur durch die Bündelung von bio-, material- und produktionstechnischem Wissen verfolgen. Dadurch wird sicher gestellt, dass Ergebnisse der Grundlagenforschung an Hochschulen sehr schnell kleinen und mittelständische Unternehmen zur Verfügung stehen. Mit diesem Wissen können diese dann neue Produkte und Produktionen entwickeln. Das Bremer Verbundprojekt arbeitet deshalb mit zehn Partnern zusammen, davon fünf mittelständische Unternehmen aus der Biotechnologie, der Faser- sowie Textilherstellung und dem Anlagenbau.

Die Förderzusage des BMBF unterstreicht einmal mehr den innovativen Charakter und die Kompetenz der in Bremen ansässigen Forschungseinrichtungen in der anwendungsorientierten und praxisrelevanten Umweltverfahrenstechnik und Werkstofftechnik unterstrichen werden.

Angelika Rockel | idw
Weitere Informationen:
http://www.faserinstitut.de/
http://www.iuv.uni-bremen.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Neue Simulation-Experiment-Kombination erlaubt tiefere Einblicke in ultraschnelle lichtinduzierte Prozesse
13.02.2020 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics