Elektrochemische Abscheidung von nanoskaliertem Silizium in Ionischen Flüssigkeiten

Hochaufgelöstes rasterelektronenmikroskopisches Bild von Silizium (aus Siliziumtetrachlorid in einer Ionischen Flüssigkeit abgeschieden). Die kleinsten Kristallite sind nur wenige Nanometer groß. <br>

Der Arbeitsgruppe von Prof. Endres am Institut für Metallurgie der TU Clausthal ist es kürzlich als erste gelungen, bei Raumtemperatur in einer Ionischen Flüssigkeit nanoskaliertes Silizium herzustellen. Nanoskaliertes Silizium ist von Bedeutung für optische Sensoren oder Laser, bei denen die Wellenlänge für Absorption bzw. Emission allein durch Wahl der Kristallitgröße eingestellt werden könnte. Im Vergleich zu den etablierten physikalischen Herstellungsverfahren zeichnet sich ein elektrochemisches Verfahren durch seinen vergleichsweise einfachen experimentellen Aufbau aus. Mit dem Rastertunnelmikroskop und der in situ Tunnelspektroskopie konnte gezeigt werden, dass das abgeschiedene Silizium elementar und halbleitend anfällt [1].

Des Weiteren konnte die Gruppe von Prof. Endres als erste zeigen, dass Benzol in neuartigen ionischen Flüssigkeiten unter chemisch sehr milden Bedingungen elektropolymerisiert werden kann [2]. Das entstehende Polybenzol ist elektrochemisch aktiv und könnte in der Zukunft eventuell einmal für die Herstellung von Polymer-Leuchtdioden verwendet werden. Die Elektrochemie hat hier den Vorteil, dass der Oxidationszustand im Polymer, der neben der Kettenlänge die Wellenlänge für die optische Emission bestimmt, nahezu beliebig eingestellt werden kann. Vielleicht können so in Zukunft Polymer-Leuchtdioden einmal auf einfache Weise elektrochemisch hergestellt werden.

Hintergrund:
Seit etwa fünf Jahren beschäftigt man sich in der Grundlagenforschung mit so genannten Ionischen Flüssigkeiten. Dabei handelt es sich um niedrig schmelzende Salze mit Schmelzpunkten unterhalb von 100 Grad Celsius. Sie zeichnen sich durch außergewöhnliche physikalische Eigenschaften aus, wie z.B. vernachlässigbare Dampfdrucke selbst bei hohen Temperaturen, niedrige Viskositäten, hohe elektrische Leitfähigkeiten und sehr weite elektrochemische Fenster. Wegen der geringen Dampfdrucke können Ionische Flüssigkeiten durch Anlegen eines Vakuums leicht wasserfrei dargestellt werden, was bei konventionellen organischen Lösemitteln häufig eine Herausforderung ist. Ihre elektrochemischen Fenster können im Vergleich zu nur 1.23 Volt bei Wasser Werte von mehr als 6 Volt erreichen, womit die Vorteile auf der Hand liegen: in ionischen Flüssigkeiten kann man Substanzen oxidieren, die edler sind als Sauerstoff und Stoffe herstellen, die unedler sind als Wasserstoff.

Die Forschungen sind niedergelegt in zwei Veröffentlichungen, die im April und Mai 2004 erscheinen:
[1] S. Zein El Abedin, N. Borissenko, F. Endres, Electrochemistry Communications, Vol.6, Issue 5, May 2004 510 – 514
[2] S. Zein El Abedin, N. Borissenko, F. Endres, Electrochemistry Communications, Vol.6 , Issue 4, April 2004, 422 – 426

Weitere Informationen:
Technische Universität Clausthal
Institut für Metallurgie
Prof. Dr. Frank Endres
38678 Clausthal-Zellerfeld
Tel. 0 5323 72 3141
Fax. 0 5323 72 2460
email: frank.endres@tu-clausthal.de

Media Contact

Jochen Brinkmann idw

Weitere Informationen:

http://www.imet.tu-clausthal.de/agfe

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer