Porositätssprung: Lamellares Material ändert seinen Schichtabstand durch Einbau kleiner Moleküle

Ein Kristall hat eine definierte Struktur, an der sich im Nachhinein nicht mehr viel ändern lässt – dieses Dogma haben spanische Chemiker nun durchbrochen: Sie haben ein schichtartiges Material hergestellt, dessen Porosität sich schlagartig erhöhen lässt. Dies könnte die Geburtsstunde einer neuen Art von Materialien mit maßgeschneiderten, auf äußere Signale antwortenden Poren sein. Mikroporöse Stoffe können „Gast“-Moleküle aufnehmen und sind heiß begehrt, etwa als selektive Katalysatoren, Ionenaustauscher oder Speicher für Wirkstoffe.

Als Ausgangsmaterial wählte das Team um Ernesto Brunet ³-Zirconiumphosphat, das eine Schicht-Struktur hat. Aus den Oberflächen der einzelnen Lamellen ragen Phosphatgruppen [PO43-] heraus, die sich leicht ersetzen lassen, ohne dass sich die Struktur der Lamellen verändert. Als Ersatz für einen Teil der Phosphate wählten die Forscher kurze Polyethylenglykol-Ketten mit je einer Phosphonsäuregruppe [PO(OH)2] an beiden Kettenenden. Diese „Diphosphonate“ verdrängen je ein Phosphat an zwei gegenüber liegenden Lamellen und verbrücken sie. Wie Säulen in einem Säulengewölbe unterteilen die Ketten den Lamellen-Zwischenraum. Nun tauschen die Forscher die noch verbliebenen Phosphatgruppen durch Hypophosphitgruppen [H2PO2] aus. Diese sind so in die Lamellenoberfläche eingebettet, dass ihre apolaren PH2-Seiten in den Zwischenraum ragen. Anders als bei der Vorstufe stehen die Säulen auf Grund der apolaren Wechselwirkungen zwischen den Lamellen nicht aufrecht, sondern kommen flach (parallel zu den Lamellen) zu liegen, der Schichtabstand ist deutlich verringert.

Wird dieses Material mit dem basischen Methylamin behandelt, quillt es in einem sehr engen pH-Bereich abrupt auf, der Schichtabstand nimmt um fast 70% zu. Wie das? Polare Moleküle wie Methylamin haben zunächst keinen Zutritt zum apolaren Milieu der Zwischenräume. Aber die Verankerungen der Säulen, die Phosphonatgruppen, sind polar. Ab einem pH-Wert von etwa 4,5 ist die Anziehung zwischen den sauren Phosphonaten und dem basischen Methylamin so groß, dass an den Rändern der Kristalle einzelne Methylamonium-Ionen eindringen. Im Verhältnis zum Schichtabstand sind diese relativ groß. Wie ein Keil treiben sie die starren Lamellen auseinander und bringen die Säulen dazu sich aufzurichten. Einige eingedrungene Keile reichen aus, um die apolaren Anziehungskräfte zwischen den Lamellen komplett aufzuheben und alle Säulen aufzurichten. Der Schichtabstand – und damit die Porosität – nimmt schlagartig zu. „Eine derart hohe Empfindlichkeit der mikrokristallinen Porosität gegenüber der Einlagerung kleiner Moleküle ist bislang einzigartig,“ sagt Brunet.

Kontakt:

Prof. Dr. E. Brunet
Departamento de Química Orgánica
Facultad de Ciencias C-I
Universidad Autónoma de Madrid
28049 Madrid, Spanien
Fax: (+34) 91-397-3966
E-mail: ernesto.brunet@uam.es

Media Contact

Dr. Renate Hoer idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer