Biomaterialien als Vorbild für extrem harte Verbundwerkstoffe

Montanuniversität auf der Spur der optimalen Festigkeit

Wissenschafter der Montanuniversität Leoben und des Max-Planck-Instituts haben nachgewiesen, dass extreme Festigkeit von Biomaterialien auf einer bisher unbekannten Fehlertoleranz-Schwelle im Nanometer-Bereich beruht. Demnach haben Verbundwerkstoffe bessere mechanische Eigenschaften, wenn die harten Partikel, welche zur Verstärkung dienen, nur wenige Nanometer groß sind. Die Forscher haben die Erkenntnisse beim Studium von Naturstoffen wie Knochen oder Zähnen gewonnen. Die Ergebnisse der Forschung werden auch im Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

Bis heute war es unklar, wie in der Natur harte und sehr feste Materialien aus einer Mischung aus sehr weichen Proteinen und extrem spröden Mineralien entstehen. Zwar ist inzwischen bekannt, dass dabei der Komposit-Charakter von biologischen Materialien eine wichtige Rolle spielt, doch über die Längenskala der darin enthaltenen Mineralteilchen wußten die Forscher bisher nur wenig. Forscher des Instituts für Metallphysik der Montanuniversität Leoben, dem Erich Schmid Institut der Österreichischen Akademie der Wissenschaften (ÖAW) und dem Max-Planck-Institut für Metallforschung in Stuttgart konnten nun erklären, warum Verbundwerkstoffe bessere mechanische Eigenschaften haben, wenn die harten Partikel nur im Nanometer-Bereich liegen. „Der Grund dafür ist, dass Risse gewöhnlich von Defekten ausgehen, weil in der Nähe dieser Defekte Überhöhungen der elastischen Spannungen auftreten“, so Peter Fratzl von der Montanuniversität Leoben. Durch Computersimulation konnten die Forscher nun nachweisen, dass in extrem kleinen Teilchen diese Spannungsüberhöhung nicht mehr auftreten kann. „Auf dieser Größenskala verformt sich das ganze Teilchen gleichmäßig und das Material wird tolerant gegenüber Defekten“, erklärt der Experte.

Die Idee zu diesen Berechnungen entstand durch das Studium von Biomaterialien, die in Leoben in den vergangenen Jahren intensiv erforscht worden sind. „Viele dieser harten Biomaterialien wie zum Beispiel Muschelschalen haben gemeinsam, dass es sich um Verbunde zwischen einer weichen Proteinmatrix und extrem harten aber auch extrem kleinen Nano-Partikeln handelt“, erläutert Fratzl. Mit Hilfe eines mathematischen Modells haben die Wissenschaftler nachgewiesen, dass Mineralkristalle, die einen Riss enthalten, bei einer kritischen Größe von ungefähr 30 Nanometer die Rissfestigkeit eines perfekten, defektfreien Kristalls aufweisen. „Außerdem haben wir eine Methode entwickelt, die verdeutlicht, dass das Spannungsfeld in der Nähe eines wachsenden Risses immer homogener wird, je kleiner die Ausdehnung der Struktur ist“, so Fratzl. Unterhalb dieser kritischen Größe sind Partikel unempfindlich gegenüber rißähnlichen Materialdefekten. Diese Ergebnisse erklären, warum Knochen, die aus Partikeln von nur einigen Nanometern Größe bestehen, wesentlich fester sind als Muschelschalen, deren Teilchen einige hundert Nanometer groß sind, erklärt Fratzl

Media Contact

Wolfgang Weitlaner pressetext.austria

Weitere Informationen:

http://www.unileoben.ac.at

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer