Gehärtete Keramiken


Lift off! Wenn ein Space Shuttle abhebt, schaufeln Hochdruck-Turbopumpen pro Sekunde mehr als siebzig Kilogramm flüssigen Wasserstoff und fast eine halbe Tonne flüssigen Sauerstoff in jedes der drei Haupttriebwerke. Bei einer Temperatur von -250 °C werden die verwendeten metallischen Bauteile im Wasserstoff extrem belastet. Bisher mussten die Lager der Pumpen nach jedem Flug ausgebaut und gewartet werden, doch das wird im kommenden Jahr anders – mindestens zwölf Starts sollen die neuen Lager aushalten bis sie gewartet werden müssen. Der Grund: Bauteile aus dem harten keramischen Werkstoff Siliciumnitrid.

Die Oberflächen von Keramiken können nun mit einem Verfahren, das in der Metallbearbeitung etabliert ist, weiter gehärtet werden. Forscher am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg setzen dazu das Kugelstrahlen ein. Ähnlich wie beim Sandstrahlen verdichtet ein Bombardement von Kugeln eine Metalloberfläche – Keramiken hingegen bekommen Risse oder brechen. Weder das Kugelstrahlen noch das Walzen wurden deshalb bei dieser Werkstoffgruppe eingesetzt.

Die Forscher untersuchten systematisch, wie die Oberfläche von Keramiken beim Kugelbeschuss verändert wird. Die Größe und das Material der Kugeln muss dabei ebenso berücksichtigt werden, wie deren Geschwindigkeit und die Dauer der Bestrahlung. Dr. Wulf Pfeiffer erläutert, welche Vorteile die Verfahrensvariante bietet: »Nachdem die Keramiken bei optimalen Parametern bestrahlt wurden, lassen sie sich an der Oberfläche bis zu fünfzig Prozent stärker belasten, ohne dass sie brechen. Nicht einmal feinste Risse treten auf. Bis zu zweieinhalb Mal länger hält ein Lager mit dieser Oberflächenhärtung.« Auf der Messe CERAMITEC in München präsentiert das IWM sein Verfahren in Halle A1, Stand 130. Gemeinsam mit dem Unternehmen CEROBEAR in Herzogenrath wird das Konzept weiter entwickelt, um Hochleistungslager aus Siliciumnitrid serienmäßig zu härten.

Keramische Lager kommen in vielen Anwendungen ohne Schmierung aus. Ganz trocken laufen sie beispielsweise in Kompressoren, sodass die Gase kein Öl enthalten. In der Getränke- und Lebensmitteltechnologie schmiert sie das Fördermedium selbst – im Space Shuttle übernimmt dies der flüssige Wasserstoff.

Ansprechpartner:
Dr. Wulf Pfeiffer
Telefon: 07 61/51 42-1 66
Telefax: 07 61/51 42-4 03
E-Mail: pf@iwm.fhg.de

Media Contact

Dr. Wulf Pfeiffer

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer