Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sensor mit Gefühl

06.06.2000


... mehr zu:
»Drucksensor »Folie »Sensor »Tastsensor »Tastsinn
Bei Schlüsselloch-Operationen können Ärzte ihren Tastsinn nicht richtig nutzen. Hier könnte ein neuartiger Sensor Abhilfe schaffen: Fraunhofer-Forscher arbeiten an einem Drucksensor, der dem Tastsinn der
menschlichen Haut nachempfunden ist.

Chirurgen brauchen bei Operationen das richtige Fingerspitzengefühl, um unterschiedliche Gewebestrukturen zu erkennen und das Skalpell exakt zu führen. Bei Schlüsselloch-Operationen können Ärzte ihren Tastsinn jedoch nicht hinreichend nutzen. Forscher vom Fraunhofer-Institut für Biomedizinische Technik IBMT in St. Ingbert arbeiten an einem neuartigen Tastsensor, der ähnlich weich und flexibel wie die menschliche Haut ist. Wird dieser Drucksensor zum Beispiel in ein endoskopisches Instrument eingebaut, kann er zukünftig dazu beitragen, dem Chirurgen wieder ein Tastgefühl zu übermitteln.

Der Tastsensor ist aus zwei übereinander liegenden Folien aufgebaut: Die untere Folie enthält die Elektrodenstrukturen, die den Druck messen. Die Elektroden sind ähnlich wie ineinander greifende Finger angeordnet. Sie berühren sich jedoch nicht - es fließt kein Strom. Die obere Folie besteht aus einem isolierenden Material an das stromleitende Silikonkautschuk-Pyramiden angefügt sind. Die Spitze der Pyramiden ist jeweils genau über den Elektrodenstrukturen positioniert. Übt man an einer Stelle Druck auf den Sensor aus, wird die Pyramide auf die untere Folie gepresst und breit gedrückt. Über das leitende Pyramidenmaterial kommen die Elektrodenfinger miteinander in Kontakt. Der Widerstand zwischen den Elektroden nimmt ab und es fließt Strom. Je größer der Druck ist, desto stärker wird auch die Pyramide flachgedrückt. Die Kontaktfläche zwischen den Elektroden nimmt zu und es fließt mehr Strom. »Unter Druckeinwirkung verändert der einzelne Drucksensor seinen elektrischen Widerstand«, erläutert Margit Biehl vom IBMT die Funktionsweise des Tastsensors. »Durch die räumliche Anordnung der Drucksensoren in Form eines Arrays lassen sich dann Druckverteilungen erfassen.«

Der Tastsensor eröffnet zahlreiche neue Anwendungen: Bei minimal-invasiven Operationen könnte er dem Arzt helfen, Gewebeunterschiede zu ertasten. Setzt man den Drucksensor in einen Robotergreifer ein, erhält der Roboter einen Tastsinn. Auch in der Medizintechnik bietet der Sensor neue Möglichkeiten. So könnte er in Prothesen integriert werden. Dann könnten die Menschen auch mit einer künstlichen Hand wieder Gegenstände ertasten oder Krümel auf einer Tischdecke fühlen. Doch das ist noch eine Zukunftsvision: Bis der Sensor einsatzreif ist und zum Beispiel in Handprothesen eingebaut werden kann, werden noch etwa zwei Jahre vergehen.

Ansprechpartnerin:
Margit Biehl
Telefon: 0 68 94/9 80-1 55
Telefax 0 68 94/9 80-4 00
E-Mail: biehl@fhg.de
Fraunhofer-Institut für
Biomedizinische Technik IBMT
Ensheimer Straße 48
66386 St. Ingbert

Pressekontakt:
Annette Maurer
Telefon: 0 68 94/9 80-1 02
Telefax: 0 68 94/9 80-4 00
E-Mail: MaurerA@ibmt.fhg.de

Weitere Informationen finden Sie im WWW:

Beate Koch |

Weitere Berichte zu: Drucksensor Folie Sensor Tastsensor Tastsinn

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht TFK entwickelt Herstellungsverfahren für großflächige Metalldrahtnetze zum Einsatz in der Raumfahrt
09.07.2020 | Hochschule Hof - University of Applied Sciences

nachricht Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing
08.07.2020 | Universität Basel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics