Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exakter Schliff für funkelnde Juwelen

02.04.2008
Rubine, Smaragde, Turmaline brauchen den richtigen Schliff, um zu funkeln. Seit Anfang des Jahres übernimmt bei der Firma Paul Wild GmbH eine vollautomatische Anlage diese Schleifarbeit: Sie spart im Mittel 15 Prozent des teuren Materials und schleift die Steine exakter.

Erst mit dem richtigen Schliff zeigen Edelsteine, was in ihnen steckt. Und nur wenn die Facetten gleichmäßig und exakt sind, erzielen die teuren Schmucksteine den Höchstpreis.

Beim Schleifen – bisher ausschließlich Handarbeit – bleibt von dem wertvollen Rohstein jedoch nur wenig übrig: 66 bis 70 Prozent rieseln als Staub herab, nur gut 30 Prozent funkeln später als Schmuckstück im Licht. Doch mit welchem der zahlreichen Schliffmuster holt man am meisten aus dem jeweiligen Rohedelstein heraus? Geübte Fachleute haben dies im Gespür.

Eine Schleifmaschine macht diesem Erfahrungswissen Konkurrenz: Sie nutzt im Mittel 15 Prozent mehr des Rohstein-Volumens. Seit drei Monaten ist die Anlage bei der Firma Paul Wild GmbH bei Idar-Oberstein im Einsatz, über hundert matte Gesteinsbrocken hat sie bereits in schillernde Edelsteine verwandelt. »Die Maschine – eine CNC-Fräsmaschine mit 17 Achsen – vermisst zunächst die Oberfläche des Rohsteins«, erklärt Dr. Karl-Heinz Küfer, Abteilungsleiter am Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern, der die Software zur Steuerung der Anlage gemeinsam mit seinen Kollegen entwickelt hat.

... mehr zu:
»Edelstein

»Vollautomatisch werden dazu schmale Lichtstreifen auf den Rohstein projiziert, anhand ihrer Krümmung lässt sich seine Geometrie bestimmen. Der Rechner ermittelt in zehn Minuten das Bild des eingeschlossenen Schmucksteins, der geschliffen werden soll und sendet die entsprechenden Befehle an die Prozesssteuerung. Die 17 Achsen sorgen dafür, dass der Fräskopf sich auf jeder beliebigen Bahn bewegen kann und die Facetten auf zehn Mikrometer genau schleift – die Steine werden perfekt geometrisch.« Zum Vergleich: Per Hand erreicht man eine Genauigkeit von etwa 100 Mikrometern, also Haaresbreite. Handpolierte Steine wirken weniger exakt, die Facetten und Schleifkanten scheinen leicht rund zu sein.

Bis ein Rohstein seine Facetten erhalten hat, braucht die vollautomatische Anlage durchschnittlich 20 Minuten. Die Maschine muss sehr vorsichtig arbeiten und lässt den edlen Staub daher etwas langsamer rieseln als ein Facharbeiter, der den Schleifdruck im Gefühl hat. Auf gar keinen Fall darf sich der Stein zu stark erhitzen, denn sonst könnte er zerspringen. Beim Polieren dagegen ist die Maschine schneller: Während der Facharbeiter den Stein immer wieder abwischen und anschauen muss, stellt die Anlage die Polierzeit automatisch ein – je nach Facettengröße, Steinart und -gewicht. »Bei Rohsteinen mittlerer Qualität amortisiert sich die Anlage nach etwa ein bis zwei Jahren«, schätzt Küfer.

Dr. Karl-Heinz Küfer | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.itwm.fraunhofer.de

Weitere Berichte zu: Edelstein

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Schäden im Leichtbau erkennen durch Ultraschallsensoren
10.12.2019 | Technische Universität Braunschweig

nachricht Wie Graphen-Nanostrukturen magnetisch werden
10.12.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungsnachrichten

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics