Laserlicht macht Zellen Beine

Bild des erfolgreichen Jenaer Forschungsergebnisses: Auf der laserbehandelten Teflonoberfläche strecken die Bindegewebszellen ihre "Füßchen" aus und finden Halt zum Wachsen. <br>Foto: IMT

Wie können wir erreichen, dass Implantate schneller und mit weniger Komplikationen einheilen? Mit dieser Frage beschäftigt sich der Materialforscher Dr. Jörg Reichert vom Institut für Materialwissenschaft und Werkstofftechnologie (IMT) der Friedrich-Schiller-Universität Jena.

Bei seinen Forschungen an Implantatoberflächen ist Dr. Reichert jetzt ein sensationeller Durchbruch gelungen: Mit Hilfe von Laserlicht konnte er eine Teflonoberfläche so bearbeiten, dass Zellen auf ihr wachsen konnten. Der internationalen Wissenschaftszeitschrift „Advanced Engineering Materials“ war das Ergebnis sogar ein Titelbild in der aktuellen Ausgabe wert.

Ausgangspunkt für die Untersuchungen war das Biomaterial Polytetrafluorethylen, besser bekannt unter dem Namen Teflon. „Auf Teflon haftet normalerweise nichts“, sagt Dr. Reichert. Nicht umsonst werde das Material beispielsweise als Antihaftbeschichtungen von Pfannen verwendet. „Dieser Effekt führt aber bei Teflonimplantaten, wie sie z. B. in künstlichen Blutgefäßen oder mechanischen Herzklappen verwendet werden, zu Problemen, wenn diese im Körper anwachsen sollen.“

Den „abweisenden“ Effekt von Teflon konnte Reichert zusammen mit Forschern des Jenaer Instituts für Photonische Technologien (IPHT) um Prof. Dr. Hartmut Bartelt überwinden, wie die Zeitschrift „Advanced Engineering Materials“ in ihrer Dezemberausgabe berichtet. Die Jenaer Materialwissenschaftler und Laser-Experten strukturierten die Oberfläche von Teflonimplantaten mit Laserlicht. Durch das Laserlicht wurde die glatte Teflonoberfläche wie mit einer nur einen Mikrometer großen Feile abgetragen, aufgeraut und geordnet.

Anschließend brachten die Forscher Bindegewebszellen (Fibroblasten) auf das unbehandelte Teflon und das mit Laserlicht behandelte Teflon auf und regten sie zum Wachsen an. Der überraschende Effekt: „Auf den mit Laserlicht strukturierten Teflonoberflächen bildeten die Körperzellen Füßchen aus, mit denen sie sich an der laserbehandelten Oberfläche festkrallten“, sagt Dr. Reichert. Auf den unbehandelten Teflonimplantaten konnten die Zellen sich dagegen nicht halten.

Wie der Jenaer Materialforscher durch weitergehende Analysen zeigen konnte, führt die Mikrostrukturierung der Oberfläche durch den Laser zu keiner chemischen Veränderung des Teflons. „Das einzige, was verändert wird, ist die physikalische Struktur der Oberfläche, so dass solche Implantate ungiftig im Körper sind“, sagt Dr. Reichert. Das Oberflächenstrukturierungsverfahren eigne sich deshalb grundsätzlich für alle gängigen kommerziellen Implantate. Jetzt suchen die Jenaer Forscher einen Industriepartner, um ihre Entdeckung in ein Produkt umzusetzen.

Kontakt:
Dr. Jörg Reichert, Prof. Dr. Klaus D. Jandt
Institut für Materialwissenschaft und Werkstofftechnologie der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947731
E-Mail: joerg.reichert[at]uni-jena.de, k.jandt[at]uni-jena.de
Sven Brückner, Prof. Dr. Hartmut Bartelt
Institut für Photonische Technologien (IPHT) Jena
Albert-Einstein-Strasse 9, 07745 Jena
Tel.: 03641 / 206200
E-Mail: sven.brueckner[at]ipht-jena.de, hartmut.bartelt[at]ipht-jena.de

Media Contact

Axel Burchardt idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer