Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bausteine für Innovationen in der Biomedizin: rekombinante Spinnenseidenproteine

20.09.2010
Spinnenseide gilt in den Materialwissenschaften als eines der faszinierendsten Naturprodukte. Eiweißmoleküle, aus denen sich Spinnenseide zusammensetzt, können heute mithilfe gentechisch veränderter Organismen biotechnologisch hergestellt werden.

Mögliche Anwendungen dieser biotechnologisch produzierten Proteine – sie werden als "rekombinante Proteine" bezeichnet – sind ein Forschungsschwerpunkt von Prof. Dr. Thomas Scheibel, der an der Universität Bayreuth den Lehrstuhl für Biomaterialien innehat. Die Titelgeschichte der jüngsten Ausgabe von "Macromolecular Bioscience" berichtet über neuere Ergebnisse seiner Forschergruppe.

Seidenpartikel für den Transport medizinischer Wirkstoffe

Partikel aus Spinnenseidenproteinen sind in hervorragender Weise dafür geeignet, Wirkstoffe auf schonende und effektive Weise langanhaltend in einem Organismus freizusetzen. Entscheidend ist dabei der Wirkstoffbeladungs- und Freisetzungsprozess der Partikel, den das Forschungsteam um Scheibel im Labormaßstab analysieren konnte: Zunächst lagern sich die Wirkstoffmoleküle an der Oberfläche eines Seidenpartikels an. Anschließend diffundieren sie in das Innere des Partikels. Sobald die Proteinpartikel mit Körperflüssigkeiten in Kontakt kommen, werden die Wirkstoffmoleküle von der Oberfläche aus langsam und kontinuierlich wieder an die Umgebung abgegeben.

Es bietet sich an, diesen Prozess für die Wirkstoffformulierung zu nutzen. Denn biologisch abbaubare Kapseln aus Spinnenseide können gewährleisten, dass dem Blutkreislauf eine definierte Dosis eines Wirkstoffs zugeführt wird – stetig und über einen längeren Zeitraum hinweg. Die Seidenpartikel selbst werden innerhalb weniger Wochen vom Organismus biologisch abgebaut. Dabei entstehen Aminosäuren, die vom Körper wiederum für den Stoffwechsel verwendet werden können.

Seidenfilme für die künstliche Herstellung von Zellgewebe

Extrem dünne Filme/Folien aus Seidenproteinen bilden einen weiteren Forschungsschwerpunkt. Sie eignen sich unter anderem als Basismaterial für biochemische Sensoren, die winzige Mengen einer organischen Substanz aufspüren können. Von herausragendem Interesse für die Biomedizin ist die Möglichkeit, Seidenfilme für die künstliche Herstellung von Zellgewebe, das sog. "Tissue Engineering", einzusetzen. Denn auf den Seidenoberflächen lassen sich gewebebildende Zellen ansiedeln, die sich kontinuierlich vermehren und zusammenhängende Strukturen bilden. Es kann sich dabei um ganz unterschiedliche Arten von Zellen handeln – beispielsweise um Zellgewebe, das dem natürlichen Knochenmaterial sehr ähnlich ist, oder auch um Stammzellen, die sich in unterschiedliche Richtungen hin ausdifferenzieren können.

Optimierung von Implantaten für die Chirurgie

Zusammen mit dem Universitätsklinikum Würzburg arbeitet die Forschergruppe um Scheibel seit kurzem an Seidenfilmbeschichtungen für Brustimplantate aus Silikon. Dabei hat der Seidenfilm die Funktion, im Körper eine Barriere zwischen dem Silikon und dem umgebenden Gewebe zu bilden. Das Implantat gewinnt dadurch Oberflächeneigenschaften, die weitaus besser verträglich sind als die des Silkons. So bleiben den Patientinnen Schmerzen und erneute Operationen erspart.

Kontrollierte Eigenschaftsprofile

Bei allen Anwendungen sind die Eigenschaften der Seidenproteine von zentraler Bedeutung: Dazu zählen insbesondere molekulare Mikrostrukturen, das Verhalten der Seidenmaterialien unter verschiedenen Drücken und Temperaturen, ihre chemische Reaktionsfreudigkeit, ihre Gas- und Wasserdurchlässigkeit und – was in der Medizin besonders wichtig ist – ihr biologisches Abbauverhalten. Unter Laborbedingungen können diese Eigenschaften präzise gesteuert werden. Das Bayreuther Forschungsteam um Scheibel ist in der Lage, jeden einzelnen Schritt bei der Herstellung von Seidenmaterialien so zu kontrollieren, dass am Ende ein Eigenschaftsprofil herauskommt, das die beabsichtigten Anwendungen unterstützt.

Biomaterialien – eine Alternative zu synthetischen Kunststoffen

"Es ist beeindruckend, wie vielseitig Spinnenseidenproteine in der Biomedizin, der Pharmazie oder der Textilindustrie eingesetzt werden können," erklärt Scheibel. "In den letzten Jahren ist es uns gelungen, die Eigenschaften von seidenbasierten Biomaterialien wie z.B. Filme oder Partikel mit immer größerer Präzision zu kontrollieren; und zwar so, dass sie für die jeweils angestrebten Anwendungen funktionsoptimiert sind. Deshalb sind Biomaterialien, die auf der Basis von Spinnenseidenproteinen hergestellt werden, eine leistungsstarke Alternative zu bisherigen synthetischen Kunststoffen. Die Natur weist uns auch in dieser Hinsicht den Weg zu innovativen Produkten."

Veröffentlichung:

Kristina Spiess, Andreas Lammel, Thomas Scheibel:
Recombinant Spider Silk Proteins for Applications in Biomaterials,
In: Macromolecular Bioscience (2010), Vol. 10, Issue 9, pp. 998–1007,
DOI-Bookmark: 10.1002/mabi.201000071
Kontaktadresse für weitere Informationen:
Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
Fakultät für Angewandte Naturwissenschaften
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Möglichkeiten des Additive Manufacturing erschlossen
13.11.2019 | Fraunhofer IFAM Dresden

nachricht Destabilisierung macht Holz stabiler - Das Holz-Paradoxon
12.11.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mehr digitale Prozesse für den Mittelstand

13.11.2019 | Unternehmensmeldung

dormakaba mit 4 Architects' Darling in Gold ausgezeichnet

13.11.2019 | Förderungen Preise

Effiziente Motorenproduktion mit der neuesten Generation des LZH IBK

13.11.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics