Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

BAM untersucht Faserverbundstoffe für Energiespeicher

02.12.2013
Viele Batterien sind sperrig und schwer. Warum nicht ein vorhandenes Gehäuse, beispielsweise die Karosserie eines Autos als Energiespeicher nutzen?

Das dachten sich auch Forscher in Europa und haben sich zum EU-Projekt StorAGE zusammengeschlossen, um einen flexibel gestaltbaren Stromspeicher aus Faserverbundwerkstoffen zu entwickeln. Das Vorhaben ist nun nach dreieinhalb Jahren Laufzeit mit ersten Ergebnissen beendet worden.


Elektronenmikroskopische Aufnahme eines Auszugsversuchs einer einzelnen Faser aus einem Matrixpolymertropfen. Foto: BAM


Elektronenmikroskopische Aufnahme eines Auszugsversuchs einer einzelnen Faser aus einem Matrixpolymertropfen. Foto: BAM

So hat der Autohersteller Volvo ein Versuchsfahrzeug mit dem neuen Verbundwerkstoff ausgestattet. Das neue Material befindet sich in der Motorabdeckung und im Kofferraumdeckel und ergänzt die Autobatterie.

Beteiligt war an diesem Projekt von neun Forschungsinstituten und Industriepartnern - unter Leitung des Londoner Imperial College - auch die BAM Bundesanstalt für Materialforschung und -prüfung. An der BAM wurden die mechanischen Versuche an den Energiespeichern durchgeführt. Zudem wurde die Entwicklung eines leitfähigen Epoxidharzes für Faserverbundwerkstoffe begleitet.

Und so funktioniert der neue Energiespeicher: In der Motorabdeckung oder dem Kofferraumdeckel aus Carbonfasern befinden sich Superkondensatoren. Superkondensatoren sind eine Weiterentwicklung herkömmlicher Kondensatoren, wie sie beispielsweise schon länger in Fotoblitzen benutzt werden. Sie sind sehr schnell aufladbar, langlebig und funktionieren auch bei minus 40 Grad Celsius.

Ein Carbonfaser-Verbundwerkstoff bildet die Elektroden. Beschichtet werden die Carbonfasern mit noch kleineren Fasern, so genannten Carbon-Nanotubes (CNT). Zusätzlich eingebrachte Lithiumatome erhöhen die Leitfähigkeit. Die CNT sind eine spezielle Form des Kohlenstoffs. Diese Röhrchen haben nur einen Durchmesser von wenigen Nanometern und Längen zwischen zwei und 50 Mikrometern.

CNT sind steifer und fester als Stahl, können den Strom fast perfekt leiten. Sie sollen die Festigkeit des bei Faserverbundwerkstoffen eingesetzten klebstoffartigen, zum Teil sogar flüssigen Matrix-Werkstoffes erhöhen. Die Untersuchungen der BAM zeigten allerdings, dass Verstärkungen mit CNT und einem damit verbundenen Anstieg der Elektrodenoberfläche noch zu keiner verbesserten Leistung führten.

Umschlossen wird der Verbund aus Carbonfasern und CNT von einem Polymerharz. Als Isolationsschicht zwischen den energiespeichernden Schichten werden Glasfasermatten verwendet. Die BAM koordinierte verschiedene Untersuchungen zur Selbstentladung, zum Elektrolytzerfall oder zur Stabilität des Materials.

Zum Einsatz kam unter anderem der an der BAM entwickelter Einzelfaserauszugsversuch („pull out test“), mit dem die Haftung einzelner Fasern zu dem sie umgebenden Material getestet wird. Faserverbundwerkstoffe enthalten viele Faserbündel, die jeweils mehrere Tausend Einzelfasern umfassen. Um aus diesem Gewebe stabile Werkstoffe zu machen, werden sie mit einem aushärtbaren Kunststoff, zum Beispiel Epoxidharz, getränkt.

Die beim Einzelfaserauszugsversuch untersuchten Fasern können sehr dünn sein. So ist eine Carbonfaser nur etwa fünf Mikrometer dick, also rund 20 mal dünner als ein menschliches Haar und mit dem Auge fast nicht zu erkennen. Die Faser wird in einen Matrixpolymertropfen eingebettet und auf der anderen Seite mit Klebstoff gehalten.

Ein Lichtmikroskop erlaubt die Verfolgung des Rissvorgangs während der Messung. Wie viel Kraft zwischen dem Kunststoff und der Faser übertragen wird, ist dann ein Maß für die Ankopplung. Für das Projekt war es wichtig sicherzustellen, dass die neuartigen leitfähigen Harzsysteme gut an den Fasern haften – und der Verbundwerkstoff somit stabil genug für den Einbau in ein Automobil ist.

„Generell funktioniert die Energiespeicherung“, sagt Gerhard Kalinka, Ingenieur an der BAM. Es sei vielversprechend. Aber man stehe noch am Anfang der Entwicklung. Denn nicht alle Fragen sind bereits abschließend geklärt worden. Zum Beispiel, wie sicher das System ist, wenn es zu Beschädigungen kommt. Beim Prototyp von Volvo kann die Autobatterie teilweise ersetzt werden, bis man allerdings ein komplettes Elektroauto auf diese Weise mit Energie versorgen kann, ist noch etliche Forschung notwendig.

Kalinka sieht aber vielversprechende Anwendungen auch bei Computern oder Handys. Dort könnte langfristig der herkömmliche Akku verschwinden und das Gehäuse den nötigen Strom liefern. Neben der Gewichtsersparnis wäre ein weiterer Vorteil von Super-Kondensatoren, dass das Aufladen in wenigen Minuten möglich sein würde.

Kontakt:
Dr.-Ing. Gerhard Kalinka
Abteilung 5 Werkstofftechnik
E-Mail: gerhard.kalinka@bam.de

Dr. Ulrike Rockland | idw
Weitere Informationen:
http://www.bam.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen
17.10.2019 | Universität des Saarlandes

nachricht Für höhere Reichweiten von E-Mobilen: Potentiale von Leichtbauwerkstoffen besser ausschöpfen
17.10.2019 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forscher der Universität Münster gewinnen neue Einblicke in die Evolution von Proteinen

22.10.2019 | Biowissenschaften Chemie

Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt

22.10.2019 | Biowissenschaften Chemie

Es war wirklich der Asteroid

22.10.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics