Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auxetische Membranen - Paradoxes Ersatzgewebe für die Medizin

04.12.2019

Ein Material, das dicker wird, wenn man daran zieht, scheint den Gesetzen der Physik zu widersprechen. Der sogenannte auxetische Effekt, der auch in der Natur vorkommt, ist jedoch für eine Vielzahl von Anwendungen interessant. Eine neue, vor kurzem im Fachblatt «Nature Communications» veröffentlichte Studie der Empa zeigt nun, wie sich das erstaunliche Materialverhalten weiter steigern lässt – und sogar für die Behandlung von Verletzungen und Gewebeschäden genutzt werden kann.

Die Natur macht es vor: Ein Kälbchen, das am Euter der Mutterkuh Milch saugt, nutzt eine faszinierende physikalische Eigenschaft der Kuhzitze: Diese besteht nämlich aus einem auxetischen Gewebe.


Die auxetischen Membranen zeigen eine rund 10-fache Dickenzunahme durch die Zugwirkung. (colorierte Aufnahme)

Empa


Zarte Fasern für auxetische Membranen: Empa-Forscher Alexandre Morel füllt die Polymerlösung in die Elektrospinnmaschine.

Empa

Paradoxerweise werden derartige Gewebe nicht schmaler, wenn sie unter Zugwirkung stehen wie etwa ein Gummiband, sondern breiter, und zwar quer zur Zugrichtung. Und so kann die Kuhmilch ungehindert durch die Zitze strömen.

Materialforscher der Empa haben die erstaunlichen auxetischen Eigenschaften nun auch bei eigens dafür entwickelten Membranen aus Nanofasern nachgewiesen. Die im Fachblatt «Nature Communications» veröffentlichte Studie weist auf vielfältige Anwendungen auxetischer Materialien hin. Eines davon ist der Einsatz der Membranen zur Regeneration von menschlichem Gewebe nach Verletzungen.

Hauchzarte Fäden

Verletzungen der Haut oder Gewebeschäden an inneren Organen heilen, indem unter anderem Zellen einwandern, sich niederlassen und ein gesundes Ersatzgewebe bilden. Was bei einem kleinen Schnitt am Finger in Kürze erledigt ist, kann jedoch bei komplexen Wunden, etwa Verbrennungen, oder dort, wo ein voluminöserer Ersatz nötig ist, die Möglichkeiten des Körpers übersteigen.

Doch der Geweberegeneration kann geholfen werden: Gibt man ein passendes Gerüst vor, nisten sich die erwünschten Zellen leichter ein und wachsen den vorgegebenen Strukturen entlang.

Empa-Forscher des «Biomimetic Membranes and Textiles»-Labors in St. Gallen haben nun neuartige Matrixsysteme für Körperzellen entwickelt, die über auxetische Eigenschaften verfügen. Mittels sogenanntem Elektrospinning werden gelöste Polymere als hauchdünne Fäden in der Form ähnlich der menschlichen extrazellulären Matrix versponnen.

So lassen sich mehrschichtige Membranen aus Nanofasern herstellen, die gut bioverträglich sind und sich in den menschlichen Körper einsetzen lassen. «Verwendet man Biopolymere wie Polymilchsäuren für den Spinnprozess, sind die Membranen sogar im Körper abbaubar», erklärt Empa-Forscher Giuseppino Fortunato. Zudem lassen sich Botenstoffe und Medikamente für eine kontrollierte und minimierte Abgabe in die Fasern einlagern.

Attraktive Porengrösse

Eine der Herausforderungen war bisher, die Porengrösse in der gesponnenen Membran möglichst attraktiv für die gewünschten Körperzellen zu gestalten. Bei den ursprünglichen Membranen liessen die Polymerfäden lediglich winzige Poren von wenigen Mikrometern frei. Eine Gewebezelle, die das Gerüst besiedeln soll, ist mit ihren bis zu 20 Mikrometern jedoch deutlich zu gross, um in der Membran optimal Platz zu finden.

Die Lösung bot das erstaunliche Polymernetzwerk, nachdem die Spinnparameter optimiert wurden: Als die Membran sanften Zugkräften ausgesetzt wurde, so dass sie sich um etwa 10 Prozent verlängerte, nahm das Volumen des Materials, statt gleichzeitig dünner zu werden, auf das 5-fache, die Dicke gar um das 10-fache zu.

«Ein auxetischer Effekt dieser Grössenordnung ist geradezu weltrekordverdächtig», schwärmt Empa-Forscher Alexander Ehret vom «Experimental Continuum Mechanics»-Labor. Ehret und sein Team hatten den aussergewöhnlichen Effekt zunächst anhand einer mechanischen Modellierung vorhergesagt und am Computer simuliert, bevor sie die Membranproben experimentell analysierten.

«Wir haben die Simulationen am Computer mehrmals durchgespielt, weil die Ergebnisse so überraschend waren», so Ehret. Der auxetische Effekt, der sich mathematisch durch das Verhältnis von Querdehnung zu Längsdehnung – die sogenannte Poisson-Zahl – quantifizieren lässt, resultiert in negativen Werten für ebendiese Poisson-Zahl. «Bisher wurden Werte um -20 erreicht. Unsere Ergebnisse lagen deutlich unter -100», sagt der Biomechanik-Experte.

In den Zugversuchen verhielten sich die Polymermembranen dann tatsächlich so wie zuvor simuliert. Erklärbar ist der Effekt durch Fasern, die sich unter Zug neu ausrichten und dabei Druck auf ihre querliegenden Kollegen im Netzwerk ausüben. Je nach Länge und Dicke knicken die bedrängten Fasern darum gezwungenermassen nach unten und oben aus und führen so zur Volumenzunahme.

"Expand on demand"

Grundsätzlich eignen sich elektro-gesponnene Membranen für die Behandlung von Wunden und Gewebeschäden an so unterschiedlichen Orten wie auf der Haut, in Blutgefässen und inneren Organen oder bei Knochenverletzungen. Durch die geeignete Auswahl der Polymere und optimierte Spinnparameter kann die Polymermembran an die Eigenschaften des Zielgewebes angepasst werden.

«Dank des grösseren Volumens durch den auxetischen Effekt sind die Matrixstrukturen für die Körperzellen nun noch attraktiver und könnten den Heilungsprozess begünstigen», sagt Giuseppino Fortunato.

Neben dem Einsatz in der Biomedizin lässt sich das bereits zum Patent angemeldete Konzept aber auch in zahlreichen anderen Gebieten anwenden. Durch Zug aktivierbare Membranen, die eingeschlossene Partikel bei Bedarf freigeben, regulierbare Filter oder Füllmaterial, das sich erst am Einsatzort auf sein volles Volumen «ziehen» lässt, also quasi «Expand on demand», seien weitere Einsatzgebiete, so die Forscher.

Die Struktur von Nanofasern

Die innere Struktur der einzelnen Nanofasern hat einen grossen Einfluss auf die Eigenschaften der Membranen. Behandelt man Nanofasern mit bestimmten Lösungsmitteln, kann die Struktur der Nanofasern aufgeklärt werden. Der Empa-Forscher Alexandre Morel hat nun herausgefunden, dass je nach verwendeten Spinnparametern unterschiedliche Faserstrukturen wie fibrilläre oder sogenannte Shish-Kebab-Phasen resultieren.

Shish-Kebab-Strukturen erscheinen im Elektronenmikroskop als gestapelte Schichten, die einem Döner-Drehspiess ähneln. Sie haben einen grossen Einfluss auf die mechanischen Eigenschaften der Membranen und somit auch auf den auxetischen Effekt.

Wissenschaftliche Ansprechpartner:

Dr. Alexander Ehret
Empa, Experimental Continuum Mechanics
Tel. +41 58 765 4842
alexander.ehret@empa.ch

Dr. Giuseppino Fortunato
Empa, Biomimetic Membranes and Textiles
Tel. +41 58 765 7677
Giuseppino.Fortunato@empa.ch

Originalpublikation:

S Domaschke, A Morel, G Fortunato and AE Ehret; Random auxetics from buckling fibre networks; Nature Communications (2019); doi.org/10.1038/s41467-019-12757-7

A Morel, SC Oberle, Ulrich, G Yazgan, F Spano, SJ Ferguson, G Fortunato and RM Rossi; Revealing non-crystalline polymer superstructures within electrospun fibers through solvent-induced phase rearrangements; Nanoscale (2019); doi:10.1039/C9NR04432A

Weitere Informationen:

Autorin: Dr. Andrea Six, Empa Kommunikation

Rémy Nideröst | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Biomimetic Empa Ersatzgewebe Gewebe Gewebeschäden Körperzellen Membranen Nanofasern Polymere Zellen

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Plättchen statt Kügelchen machen Bildschirme sparsam
20.01.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt
17.01.2020 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Differenzierte Bildgebung für bessere Diagnosen bei Brustkrebs

21.01.2020 | Medizin Gesundheit

Kurilen-Kamchatka-Graben im Pazifischen Ozean gehört nicht mehr zu den „10.000ern“

21.01.2020 | Geowissenschaften

Proteinfunktionen - Ein Lichtblitz genügt

21.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics