Die atomare Oberflächenstruktur beeinflusst die Richtung von Reibungskräften: Neue Studie liegt vor

A) Die Herausforderung bei der Messung der Richtungsabhängigkeit von Reibungskräften: Eine oszillierende Messspitze bestimmt die Querkräfte zwischen einer atomar scharfen Spitze und einer Siliziumoberfläche. Die Oberflächenatome verbinden sich zu Zweiergruppen, welche sich ähnlich wie Schaukelpferdchen leichter in Längs- als in Querrichtung auslenken lassen. Die „atomaren Schaukelpferdchen“ drehen sich um 90 Grad, wenn man eine atomare Stufe überwindet. Dies erlaubt die präzise Messung der Querkräfte, wobei die Messspitze immer in die gleiche Richtung schwingt.<br><br>Abbildung: Universität Regensburg<br>

Die Ergebnisse der Forscher um Prof. Dr. Franz J. Gießibl vom Institut für Experimentelle und Angewandte Physik sind jetzt, mit Unterstützung eines Teams um Dr. Pavel Jelinek von der Tschechischen Akademie der Wissenschaften in Prag, in der aktuellen Ausgabe der Fachzeitschrift „Physical Review Letters“ veröffentlicht worden (DOI: 10.1103/Physics.6.102).

Schätzungen zufolge wird ein Drittel der gesamten Energie, die auf der Welt verbraucht wird, zur Überwindung von Reibungswiderstand aufgewendet. Vor diesem Hintergrund ist die Erforschung des Phänomens der Reibung von großem Interesse. Dies gilt auch für ihre Richtungsabhängigkeit: Schon beim Streicheln einer Katze stellt man fest, dass die Reibung von der Richtung abhängt – mit dem Strich geht es einfacher als dagegen. Bei der Untersuchung der Richtungsabhängigkeit von Reibung im atomaren Bereich standen Forscher allerdings lange Zeit vor einem Problem. So mussten die Messungen in der Regel mehrmals wiederholt werden, um zu klären, ob die Beobachtungen das Resultat der zu untersuchenden Probe sind, und nicht der Messspitze, die die Probe untersucht.

Die Regensburger Forscher haben deshalb ein besonderes Messverfahren entwickelt. Dabei wird eine Siliziumoberfläche von einer Sonde abgetastet, die sich parallel zur Oberfläche bewegt. Für die mechanische Abtastung der Oberfläche nutzten die Forscher einen speziellen qPlus-Lateralkraftsensor, der auf der Stimmgabel einer Quarzuhr basiert und die Sondenspitze in Schwingungen versetzt. Die Sondenspitze kommt bei diesem Verfahren nicht mit der Oberfläche in Kontakt.

Die Siliziumatome auf der Oberfläche wurden zudem in Pärchen bzw. sogenannten Dimeren auf unterschiedlich hohen Ebenen angeordnet – ähnlich einem Schaukelpferd (vgl. Darstellung A im Anhang). Die „atomaren Schaukelpferdchen“ ließen sich leichter in Längs- als in Querrichtung auslenken, wie von den Regensburger Experimentalphysikern gezeigt und durch Berechnungen der Prager Forscher bestätigt wurde.

Auf diese Weise waren die Wissenschaftler in der Lage, Reibungskräfte in zwei verschiedene Richtungen (parallel und senkrecht zu den „atomaren Schaukelpferdchen“) direkt miteinander zu vergleichen, da sich die Ausrichtung der „atomaren Schaukelpferdchen“ um 90 Grad dreht, wenn die Messspitze auf eine jeweils höhere oder niedrigere Ebene wechselte (Darstellung B im Anhang). Die Forscher stellten so fest, dass die atomare Oberflächenstruktur maßgeblichen Einfluss auf die Richtung der Reibungskräfte hat.

Original-Titel der Publikation:
A.J. Weymouth, D. Meuer, P. Mutombo, T. Wutscher, M. Ondracek, P. Jelinek and F.J. Giessibl: “Atomic Structure Affects the Directional Dependence of Friction”, in “Physical Review Letters” 111, 126103 (2013), (DOI: 10.1103/Physics.6.102).
Der Aufsatz im Internet unter:
http://prl.aps.org/pdf/PRL/v111/i12/e126103
Ansprechpartner für Medienvertreter:
Prof. Dr. Franz J. Gießibl
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2105/2106
Franz.Giessibl@physik.uni-regensburg.de
oder
Dr. Jay Weymouth
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-2105/2113
Jay.Weymouth@physik.uni-regensburg.de

Media Contact

Alexander Schlaak idw

Weitere Informationen:

http://www.uni-regensburg.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer