Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Advanced Materials: Glas wie Kunststoff bearbeiten

18.05.2018

Reines Quarzglas ist hoch transparent und sehr resistent gegenüber thermischen, physikalischen und chemischen Einwirkungen – optimale Voraussetzungen für den Einsatz in der Optik, der Daten- oder Medizintechnik. Für eine effiziente und qualitativ hochwertige Bearbeitung fehlen jedoch geeignete Verfahren. Wissenschaftler am Karlsruher Institut für Technologie (KIT) haben eine Formgebungstechnik entwickelt, mit der sie Quarzglas wie Kunststoff strukturieren können. Sie stellen sie in der Zeitschrift Advanced Materials vor.

„Hochreines Quarzglas und seine hervorragenden Eigenschaften mit einer einfachen Technologie zu dessen Strukturierung zu verbinden, ist seit jeher eine riesen Herausforderung“, erklärt Dr. Bastian E. Rapp, Leiter der interdisziplinären Forschergruppe NeptunLab am Institut für Mikrostrukturtechnik (IMT) des KIT.


Glassomer kann wie Kunststoff gefräst, gedreht, gelasert oder in CNC-Maschinen bearbeitet werden

Markus Breig, KIT


Mit Glassomer können Glaskomponenten wie diese durch Schnitzen hergestellt werden

Markus Breig, KIT

Für die industrielle Glasbearbeitung entwickeln Rapp und sein Team neue Verfahren. „Statt Glas auf bis zu 800 Grad Celsius zu erhitzen und dann in Form zu bringen oder Teile von Glasblöcken mittels Laserbearbeitung oder Ätzen zu strukturieren, setzen wir an den kleinsten Glas-Teilchen an“, berichtet der Maschinenbauingenieur.

Die Wissenschaftler rühren Glaspartikel in der Größe von 40 Nanometern in flüssigen Kunststoff ein, formen das Gemisch wie „einen Sandkuchen“ und härten es durch Erwärmung oder Belichtung zu einem Feststoff aus, der zu 60 Prozent aus Glaspartikeln und zu 40 Prozent aus Kunststoffpartikeln besteht. Die Polymere wirken dabei wie ein Kleber, der die Glaspartikel an der richtigen Stelle festhält und so die Form fixiert.

Dieses „Glassomer“ kann wie ein herkömmlicher Kunststoff gefräst, gedreht, gelasert, oder auch in CNC-Maschinen bearbeitet werden. „Wir öffnen die gesamte Bandbreite der Polymerumformtechnik für Glas“, betont Rapp. Für die Herstellung von hochleistungsfähigen Linsen, die unter anderem in Smartphones zum Einsatz kommen, fertigen die Wissenschaftler zum Beispiel eine Stange aus Glassomer, aus der sie die Linsen heraus drehen.

Für ein hochreines Quarzglas müssen sie die Polymere im Komposit wieder entfernen. Hierfür werden die Linsen in einem Ofen bei 500 bis 600 Grad Celsius erhitzt. Der Kunststoff verbrennt dabei vollständig zu CO2. Um die hierbei entstehenden Lücken im Material zu schließen, werden die Linsen bei 1300 Grad Celsius gesintert, ein Prozess, bei dem sich die verbleibenden Glaspartikel zu porenfreiem Glas verdichten.

Dieses Formgebungsverfahren ermöglicht die Herstellung von Materialien aus hochreinem Glas für all jene Anwendungen, für die bisher lediglich Kunststoffe eingesetzt werden können. Das bietet der glasverarbeitenden Industrie ebenso neue Möglichkeiten wie der optischen Industrie, der Mikroelektronik, Biotechnologie und Medizintechnik. „Das Verfahren eignet sich für die Massenproduktion und macht Quarzglas in der Herstellung und im Einsatz billiger, nachhaltiger und energieeffizienter als Spezialkunststoff“, erklärt Rapp.

Es ist die dritte Innovation für die Bearbeitung von Quarzglas, die das NeptunLab auf der Basis eines flüssigen Glas-Polymer-Gemischs entwickelt hat. 2016 war es den Wissenschaftlern bereits gelungen, die Mischung in Formen auszuhärten, 2017 für den 3-D-Druck und damit für die additive Fertigung nutzbar zu machen. Die Forschergruppe wird im Rahmen des Nachwuchswettbewerbs „NanomatFutur“ vom Bundesministerium für Bildung und Forschung von 2014 bis 2018 mit 2,8 Millionen Euro gefördert und will „Glassomer“ nun über eine Ausgründung auf den Markt bringen.

Originalpublikation
F. Kotz, N. Schneider, A. Striegel, A. Wolfschläger, N. Keller, M. Worgull, W. Bauer, D. Schild, M. Milich, C. Greiner, D. Helmer, B. E. Rapp: “Glassomer: Processing Fused Silica Glass like a Polymer”, Advanced Materials, 2018: https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201707100

Weitere Informationen zum NeptunLab: http://www.neptunlab.org

Weitere Informationen zur Glassomer GmbH: http://www.glassomer.com

Weiterer Pressekontakt:
Regina Link, Redakteurin/Pressereferentin, Tel.: +49 721 608-21158, E-Mail: regina.link@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-,
Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 26 000 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Weitere Informationen:

https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201707100
http://www.neptunlab.org
http://www.glassomer.com
http://regina.link@kit.edu
http://www.sek.kit.edu/presse.php

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

IGF macht's möglich: Lemgoer Forschungsteam entwickelt neues Verfahren zur Abwehr von Noroviren auf Obst und Gemüse

26.02.2020 | Biowissenschaften Chemie

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungsnachrichten

Neue Wege im Kampf gegen die Parkinson-Krankheit: HZDR-Forscher entwickeln Radiotracer für die Differentialdiagnostik

26.02.2020 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics