Zukunft der Flugzeugflügel: bewegliche Vorderkante mit dehnbarer Haut und integrierten Funktionen

Droop Nose-Demonstrator mit beweglicher Flügelvorderkante und integrierten zukunftsweisenden Technologien. Foto: Fraunhofer LBF

In diesen Demonstrator, der als Technologieplattform gedacht ist, haben die Wissenschaftler mehrere potenzielle Zukunftstechnologien integriert. Dazu gehören u.a. eine flexible Droop Nose (bewegliche Vorderkante) mit einem Mess- und Regelsystem und ein variables Eisschutzsystem. Den Demonstrator zeigt das Fraunhofer LBF auf der Paris Air Show vom 15.-21.6.2015 am Clean Sky-Stand in Halle 2b Stand G65.

Der 1:1 Droop Nose-Demonstrator wurde im Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in Darmstadt aufgebaut und abschließend unter Vereisungsbedingungen im Klimawindkanalversuch erprobt. Auf Basis aerodynamischer Vorgaben entwickelten die Wissenschaftler eine Kinematik für die Absenkung der Flügelvorderkante.

Das Besondere dieses Hochauftriebsmittels im Bereich der Vorderkante: Es vermeidet Spalten, weil sich die Haut mitverformt. Dies ist insbesondere für künftige Laminarflügel von hoher Bedeutung, da diese nur mit glatten Oberflächen realisierbar sind. Ein weiterer Vorteil sind die reduzierten Lärmemissionen im Landeanflug dank der nicht vorhandenen Spalten. Die hohe Dehnung der Haut, die bei jeder Betätigung auftritt, erfordert jedoch eine ausreichende Betriebsfestigkeit.

Die Verformung der Haut erzeugt ein elektromechanischer Aktuator. Zusätzlich werden einige vom Fraunhofer IBP getestete „Smart memory alloy-Aktoren“ genutzt. Zur künftigen Regelung der Kinematik im Flug entwickelt das Fraunhofer LBF ein Verfahren zur Rekonstruktion der Flügelgeometrie auf Basis von Sensorsignalen. Zu diesem Zweck wurden unter anderem fast 50 faseroptische Dehnungssensoren in die Haut der beweglichen Flügelvorderkante integriert und über ein vom Fraunhofer LBF entwickeltes strukturintegriertes Steckerkonzept nach außen geführt.

Für die Technologie-Plattform „Flügel“ stellte das Fraunhofer ENAS sogenannte „synthetic jet Aktuatoren“ bereit. Diese können die Strömung positiv beeinflussen. Das Fraunhofer LBF integrierte zusätzlich erstmals ein thermisches Vereisungsschutzsystem in eine hochgedehnte Flügelvorderkante. Dieses Konzept wurde aufgrund der hohen Hautdehnung bisher nicht zufriedenstellend gelöst. Im Rahmen von Clean Sky gelang es dem Fraunhofer LBF, ein flexibles Heizsystem auf Basis von Carbon Nano Tubes (CNT) zu entwickeln. Im Modell integrierte Thermosensoren regeln die Temperatur.

Bei ersten Erprobungen des Modells zeigte sich eine gute Übereinstimmung der Flügelverformungen zwischen Ergebnissen der FE-Simulationen und dem gefertigten Modell. Daraufhin wurden die Enteisungsmöglichkeiten des Demonstrators im Windkanal erprobt.

Die Struktur und die verschiedenen Technologien funktionierten erwartungsgemäß gut, und durch den erfolgreichen Versuch im Windkanal konnte das Fraunhofer LBF den Technologiereifegrad nachweisen. Diese neue Technologie ist das Ergebnis eines groß angelegten Forschungsprojektes. Die Entwicklung der Technologien ist noch nicht abgeschlossen und soll in künftigen Projekten fortgesetzt werden.

Media Contact

Anke Zeidler-Finsel Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer