Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SmartBlades: Neue Ideen, wie Rotorblätter stabiler und leichter werden

04.02.2016

Wie können Rotorblätter von Windenergieanlagen Strom in Zukunft noch effizienter produzieren? Im Projekt SmartBlades entwickelten und prüften die Forscher des Forschungsverbundes Windenergie (FVWE) neue Ideen für intelligente Rotorblätter, die sich dem Wind anpassen können. Zum Abschluss des Projektes SmartBlades stellen die Forscher am 3. und 4. Februar 2016 ihre Ergebnisse in Stade bei einer Konferenz mit nationalen und internationalen Gästen aus Wissenschaft und Industrie vor. SmartBlades war ein vom Bundesministerium für Wirtschaft und Energie mit rund zwölf Millionen Euro gefördertes dreijähriges Forschungsprojekt.

Ein Rotorblatt einer Windenergieanlage ist inzwischen bis zu 85 Meter lang, die Anlagen reichen in Höhen von über 200 Metern. Das bedeutet, dass Rotorblätter aufgrund der ungleichmäßigen Windverteilung in Bodennähe und im oberen Teil der Anlage einer stark schwankenden Windlast ausgesetzt sind.


Intelligente Rotorblätter passen sich der Windstärke an.

DLR


Berührte Themengebiete im Projekt Smart Blades.

DLR

Die Folge: hohe Belastungen für das Material des Rotorblattes und eine große Herausforderung bei der Regelung der Anlage. Vor allem bei stark böigem Wind kann die Windlast so groß sein, dass die Betreiber ihre Anlagen sogar abschalten müssen, um Schäden zu vermeiden. Wirtschaftlich ist das schlecht, denn starker Wind sorgt für gute Stromerträge. Ideal wären Rotorblätter, die ihre Geometrie an die lokalen Windeinwirkungen anpassen können.

Möglich wird dies durch aktive und passive Technologien, mit denen sich die einzelnen Rotorblättern auf die lokalen Windgegebenheiten einstellen können - sogenannte Smart Blades. Wissenschaftler des FVWE mit dem Deutschen Zentrum für Luft- und Raumfahrt (DLR), dem Fraunhofer IWES und dem ForWind, dem Zentrum für Windenergiefor-schung der Universitäten Oldenburg, Hannover und Bremen haben im Projekt SmartBlades die Wirkung dieser Technologien untersucht.

Entwicklern und Betreibern von Anlagen bieten die Ergebnisse des Projektes neues Know-how und Werkzeuge um effektivere, kosteneffizientere und zuverlässigere Anlagendesigns auf den Markt zu bringen.

Intelligente Strukturen reagieren auf die Windturbulenz

Wenn sich ein Rotorblatt bei starkem Wind verdreht, so dass es dem Wind weniger Angriffsfläche bietet, sprechen die Wissenschaftler von einer Biege-Torsions-Kopplung. Da diese Biegung allein durch die Kräfte des Windes hervorgerufen wird, handelt es sich um sogenannte passive Mechanismen. Dabei wurden zwei verschiedene Ansätze verfolgt, die diesen Effekt bewirken.

Zum einen wurde eine sichelförmige Geometrie untersucht, zum anderen eine besondere Struktur der materiellen Bauweise des Rotorblattes. Beim strukturellen Ansatz werden die Glasfasern, aus denen das Rotorblatt aufgebaut ist, so gelegt, dass es sich bei unterschiedlichen Windgeschwindigkeiten verdreht und den Anstellwinkel somit lokal anpasst.

"Die Vorteile der Mechanismen sind, dass die Blätter weniger massiv und damit leichter gebaut werden können. Beide Verfahren haben das Potenzial die Stromausbeute von Windenergieanlagen zu verbessern," beschreibt Alper Sevinc, SmartBlades-Technologiekoordinator der biegetorsionsgekoppelten Rotorblätter vom Fraunhofer-Institut IWES.

In einem zukünftigen Projekt wollen die Forscher die in der Simulation getesteten Mechanismen an bereits entworfenen Demonstrations-Rotorblättern testen.

Aktive Steuerelemente im Rotorblatt

Ein anderer Ansatz, den die Wissenschaftler verfolgt haben, sind aktive Mechanismen, die die Hinterkanten eines Rotorblattes verändern, womit Anlagenbetreiber die aerodynamischen Belastungen an einem Rotorblatt steuern können. Untersucht haben die Wissenschaftler dabei in sich bewegliche (formvariable) Hinterkanten, und starre Hinterkantenklappen.

Das Konzept kommt aus der Luftfahrt und lässt sich mit den Klappen an Tragflächen von Flugzeugen vergleichen. Die Untersuchungen ergaben, dass beide Verfahren die Last am Rotorblatt effektiv vermindern. Der Wartungsaufwand bei starren Hinterkantenklappen ist jedoch durch die auftretende Verschmutzung der beweglichen Teile so erheblich, dass die Vorteile von beweglichen Hinterkanten klar überwiegen. Perspektivisch ist auch für diesen Ansatz der Bau von Demonstrations-blättern geplant.

Optimales Profil durch bewegliche Flügel an der Vorderkante

Die Wissenschaftler untersuchten auch, ob ein beweglicher Vorflügel an einem Rotorblatt die Effizienz von Windenergieanlagen unter stark schwankenden turbulenten Windbedingungen verbessern kann. Dieser Mechanismus erlaubt es, ein Rotorblatt in einem großen Windgeschwindigkeitsbereich optimal zu nutzen.

"Der Vorteil liegt hierbei in der Reaktionsgeschwindigkeit der Bewegung des Vorflügels, die eine schnelle Beeinflussung der wirkenden aerodynamischen Kräfte bei turbulenten Einströmbedin-gungen ermöglicht", kommentiert Michael Hölling, SmartBlades-Technologiekoordinator für Rotorblätter mit beweglichen Vorflügeln von Forwind, das Potential des adaptiven Vorflügels.

Das Konzept des beweglichen Vorflügels wurde während des Projektes im Windkanal getestet und lieferte vielversprechende Ergebnisse für weitere Entwicklungen.

Zusätzlich haben die Forscher die Wirtschaftlichkeit der Technologieentwicklungen bewertet. In Simulationen haben sie alle Mechanismen mit einer State-of-the-Art-Referenzanlage mit einem 80 Meter langen Rotorblatt verglichen, mit dem Ergebnis, dass viele der untersuchten Mechanismen Rotorblätter in Zukunft besser machen können. In einem nächsten Schritt hoffen die Forscher, ihre Ergebnisse an Full-Scale-Rotorblättern testen zu können.

Mit dem Projekt SmartBlades wurde eines der ersten großen Forschungsprojekte des 2012 gegründeten Forschungsverbundes erfolgreich zu Ende geführt.

"Die hervorragende Zusammenarbeit des Konsortiums spiegelt sich in den vielversprechenden Ergebnissen des Projektes wieder. Das Projekt hat gezeigt, dass sich die unterschiedlichen Kompetenzen der Partner ideal ergänzen und verknüpfen lassen", betont Ceyda Icpinar, SmartBlades-Projektmanagerin vom DLR-Institut für Faserverbundleichtbau und Adaptronik in Braunschweig.

Mit dem erfolgreichen Abschluss des Projektes ist nicht nur der gemeinsame Weg für Folgeaktivitäten im Bereich der intelligenten Rotorblätter geebnet, es wurde auch ein stabiles Fundament gelegt, für weitere Forschungsvorhaben im gesamten Windenergiebereich.

Über den Forschungsverbund FVWE

Der 2013 gegründete Forschungsverbund Windenergie (FVWE) bündelt das Know-how von rund 600 Wissenschaftlerinnen und Wissenschaftlern, um wegweisende Impulse für die Windenergieforschung der Zukunft zu geben. Die drei Partner Deutsches Zentrum für Luft- und Raumfahrt (DLR), ForWind - Zentrum für Windenergieforschung der Universitäten Oldenburg, Hannover und Bremen - sowie das Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES) Nordwest, forschen mit Industrie, Politik und weiteren Forschungspartnern an langfristigen und strategisch wichtigen Großpro-jekten. Die Kooperation der drei Partner ermöglicht den unkomplizierten Zugriff auf eine weltweit einmalige Test-Infrastruktur, gewährleistet den Technologietransfer aus der Luftfahrt und stellt die Verknüpfung mit der universitären Forschung und Lehre sicher.

Prof. Dr.-Ing. Andreas Reuter
Fraunhofer IWES
Geschäftsführender Institutsleiter
Tel.: +49 471 14290-200
Fax: +49 471 14290-111

Dr.-Ing. Jan Teßmer
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Koordinator Windenergieforschung
Tel.: +49 531 295-3217
Fax: +49 531 295-2838

Dr. Stephan Barth
ForWind - Zentrum für Windenergieforschung
Geschäftsführer
Tel.: +49 441 798-5091
Fax: +49 441 798-5099

Weitere Informationen:

http://www.forwind.de
http://www.dlr.de
http://www.windenergie.iwes.fraunhofer.de

Britta Rollert | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Neue Kreissäge vermeidet Verletzungen
18.07.2019 | Technische Universität Wien

nachricht Mit dem Eulenhals zu mehr Effizienz
02.07.2019 | Technische Hochschule Nürnberg Georg Simon Ohm

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwachsende Zähne

Wissenschaftler*innen der TU Berlin arbeiten an Zähnen aus körpereigenem Material

Haie können es, Krokodile können es, Nagetiere können es und Menschen – theoretisch – auch. Die Rede ist von nachwachsenden Zähnen. Ein Hai muss sich keine...

Im Focus: MOF@SAW oder: Nanobeben und molekulare Schwämmchen zum Wiegen und Trennen winzigster Massen

Augsburger Chemiker und Physiker berichten, wie ihnen die extrem schwierige Trennung von Wasserstoff und Deuterium in einem Gasgemisch gelungen ist.

Dank der hier vor Ort entwickelten und bereits vielfach angewendeten Surface Acoustic Waves-Technologie (SAW) ist die Universität Augsburg international als...

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Bessere Wärmeleitfähigkeit durch geänderte Atomanordnung

Die Anpassung der Wärmeleitfähigkeit von Materialien ist eine aktuelle Herausforderung in den Nanowissenschaften. Forschende der Universität Basel haben mit Kolleginnen und Kollegen aus den Niederlanden und Spanien gezeigt, dass sich allein durch die Anordnung von Atomen in Nanodrähten atomare Vibrationen steuern lassen, welche die Wärmeleitfähigkeit bestimmen. Die Wissenschaftler veröffentlichten die Ergebnisse kürzlich im Fachblatt «Nano Letters».

In der Elektronik- und Computerindustrie werden die Komponenten immer kleiner und leistungsfähiger. Problematisch ist dabei die Wärmeentwicklung, die durch...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Ein Schlüsselelement der Umwelt: Phosphor

22.07.2019 | Veranstaltungen

Testzone für die KI-gestützte Produktion

18.07.2019 | Veranstaltungen

„World Brain Day“ zum Thema Migräne: individualisierte Therapie statt Schmerzmittelübergebrauch

18.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Molekulare Maschinen mit Lichtantrieb

23.07.2019 | Physik Astronomie

Gendefekt liefert Hinweise auf die Krankheitsentstehung von ALS

23.07.2019 | Biowissenschaften Chemie

Nachwachsende Zähne

23.07.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics