Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Prinzip der Abgasführung verbessert Turboaufladung bei Verbrennungsmotoren

05.09.2019

Turbolader steigern die Motorleistung und die Effizienz von Motoren erheblich.

An der Universität Stuttgart wurde ein Verfahren entwickelt, um Turbolader insbesondere für Benzinmotoren besser regelbar zu machen.
Das neuartige MEDUSA-Prinzip eignet sich zur Aufladung von Diesel- und Ottomotoren und ist als günstige und mechanisch robuste Alternative zu herkömmlichen Verfahren hochinteressant für Automobilhersteller.


Die Grundidee des MEDUSA-Steuerungskonzeptes besteht darin, den Turbineneinlass in mehrere Sektoren zu unterteilen und die Einströmung der verschiedenen Sektoren mittels Ventilen zu steuern.

Grafik: Universität Stuttgart

Die Technologie-Lizenz-Büro (TLB) GmbH ist im Auftrag der Universität Stuttgart mit der wirtschaftlichen Umsetzung der Erfindung beauftragt und sucht Partner aus der Industrie für die Markteinführung.

Turbolader steigern die Motorleistung und die Effizienz von Motoren erheblich. Für Verbrennungsmotoren existieren derzeit verschiedene Regelorgane mit unterschiedlichen Funktionsweisen und Einschränkungen. An der Universität Stuttgart wurde ein Verfahren entwickelt, um Turbolader insbesondere für Benzinmotoren besser regelbar zu machen.

Das neuartige MEDUSA-Prinzip eignet sich zur Aufladung von Diesel- und Ottomotoren und ist als günstige und mechanisch robuste Alternative zu herkömmlichen Verfahren hochinteressant für Automobilhersteller.

Gerade im Bereich des Downsizings von Benzinmotoren und den damit einhergehenden höheren Motoraustrittstemperaturen eignet sich das neuartige MEDUSA-Prinzip ideal.

Die bisherigen Lösungsansätze für die Anströmung eines Turbolader-Turbinenrades haben als gemeinsames Merkmal die Sammlung der Abgase der einzelnen Zylinder in einem Krümmer und die anschließende Zuleitung mittels eines Spiralgehäuses auf den Rotor. Bei niedrigen Motordrehzahlen und –lasten werden die besten Aufladungsergebnisse derzeit mit dem VTG-Regelorgan (Variable Turbinengeometrie ) erzielt.

Dabei ermöglichen im Turbinengehäuse integrierte verstellbare Leitschaufeln eine optimale Ladedruckregelung und Anströmung des Laufrades über den gesamten Betriebsbereich. Diese Leitschaufeln sind materialbeding in der Regel nicht für hohe Temperaturen geeignet, so dass die Methode gerade für moderne Downsizing-Benzinmotoren nicht in Frage kommt.

Daher werden für diese Motoren sog. Waste-Gate-Turbolader verwendet, die quasi ungeregelt sind und nur bei Betriebspunkten mit höherer Leistung einen Teil des Motormassenstroms um die Turbine umleiten.

Genau hier setzt das Medusa-System an, das am Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium (ITSM) unter der Leitung von Prof. Damian Vogt entwickelt und erprobt wird: Die Regelung findet nämlich nicht über Leitschaufeln statt, sondern über Strömungskanäle, die in Düsen münden. Diese Ventile können zu- oder abgeschaltet werden und sorgen daher– anders als bei aktuellen Wastegate-Ladern – für ein verbessertes Ansprechverhalten und eine höhere Dynamik im Teillastbereich.

Die Grundidee des MEDUSA (Multiple Exhaust Duct with Source Adjustment) Steuerungskonzeptes besteht darin, den Turbineneinlass in mehrere Sektoren entlang des Umfangs zu unterteilen und die Einströmung der verschiedenen Sektoren mittels Ventilen individuell zu steuern.

Dieser Teilzugangsansatz funktioniert ähnlich wie ein VTG-Steuerungssystem und ermöglicht es, den Turbineneinlassdruck bei niedrigen Triebwerksmassenströmen zu erhöhen, indem Turbineneinlasssegmente geschlossen und damit die effektive Strömungsfläche begrenzt werden.

Dadurch kann eine höhere Turboladerleistung bei niedrigen Motorlastbedingungen erreicht werden, wodurch das Gasannahmeverhalten deutlich verbessert wird. Andererseits wird die Schluckfähigkeit der Turbine bei Volllast gegenüber herkömmlichen Wastegate-Turboladern erhöht, so dass das Turbinenrad kleiner ausgelegt werden kann, was zusätzlich zu einer geringeren Trägheit und damit zu einer Reduzierung des sogenannten Turbolochs führt.

Die verwendete mechanische Regeleinheit ist sehr robust, insbesondere bei hohen Abgastemperaturen, da die verwendeten Ventile nicht im Turbinengehäuse integriert sind, sondern extern angebracht werden. Genau diese Eigenschaft macht den MEDUSA-Lader so interessant für Verbrennungsmotoren, vor allem im Hinblick auf sparsame Downsizing-Aggregate und auch für Kleinmotoren oder Range Extender im Bereich der Elektromobilität. Aktuelle Tests am Motorprüfstand haben gezeigt, dass die Methode tatsächlich funktioniert. Auch liegen mittlerweile konkrete Leistungsdaten vor.

Patente für den MEDUSA-Lader wurden in Europa unter der Nummer EP 2 647 808sowie in USA (US 9,267,418), Japan und China erteilt. Die Technologie-Lizenz-Büro (TLB) GmbH ist im Auftrag der Universität Stuttgart mit der wirtschaftlichen Umsetzung der Erfindung beauftragt und sucht Partner aus der Industrie für die Markteinführung. Die TLB GmbH bietet Unternehmen Möglichkeiten zur Lizenzierung der patentierten Technologie oder u.U. des Kaufs der Schutzrechte.


Für weitere Informationen: Innovationsmanager Dr.-Ing. Hubert Siller (siller@tlb.de).

Weitere Informationen:

https://www.tlb.de/de/presse-news/einzelansicht/article/neues-prinzip-der-abgasf...

Annette Siller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Die nächste Generation der industriellen 3D-Drucker
09.01.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Gießwalzanlage der TU Freiberg ermöglicht innovative Magnesiumbauteile für den Leichtbau
20.12.2019 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics