Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Kreissäge vermeidet Verletzungen

18.07.2019

Wenn sich ein Finger nähert, verschwindet das Sägeblatt: Eine neue Sicherheitstechnologie für Kreissägen entwickelte die TU Wien in Zusammenarbeit mit der Felder Group.

Ein bisschen Gefahr ist stets dabei, wenn man an einer Kreissäge arbeitet. Leider kommt es immer wieder zu folgenschweren Unfällen – oft lassen sich verletzte Finger nach einem Kreissägen-Unfall nicht mehr retten.


Helmut Caudr (links) und Thomas Weiler

TU Wien

Damit es in Zukunft nicht mehr so weit kommt, hat man an der TU Wien eine revolutionäre Sicherheitstechnologie entwickelt: Materialien wie Holz werden von der Säge wie gewohnt zerteilt, doch sobald sich ein Finger nähert, wird er erkannt und das Sägeblatt verschwindet blitzartig im Gehäuse des Geräts. Die Erfindung wurde von der TU Wien patentiert, von der Firma Felder wird die Technologie nun kommerziell verwertet.

Sicher und alltagstauglich

„Es gibt schon seit 1960 Versuche, aktive Sicherheitstechnik in Kreissägen einzubauen“, sagt Thomas Weiler vom Institut für Fertigungstechnik und Photonische Technologien der TU Wien.

„Die bisherigen Systeme reagieren allerdings erst, wenn das Sägeblatt tatsächlich direkten Kontakt mit menschlichem Gewebe hat, doch dann ist es eigentlich schon zu spät. Die Notbremsung muss extrem abrupt erfolgen, um keine tiefergehenden Verletzungen zu riskieren. Derart intensive Bremsvorgänge führen zu Beschädigungen am Sägeblatt und erfordern auch den Austausch der verwendeten Bremseinheit.“

Das Team der TU Wien wollte stattdessen eine Lösung finden, die in der Industrie auch wirklich auf große Zustimmung stößt – die also einerseits Finger zuverlässig schützt und andererseits auch keine hohen Kosten verursacht.

„Die entscheidende Idee war, das Sägeblatt selbst als kapazitiven Sensor zu verwenden“, sagt Thomas Weiler. Ähnlich wie eine Antenne wird das Sägeblatt elektrisch zum Schwingen gebracht – und diese elektrische Schwingung wird davon beeinflusst, ob ein menschlicher Körper in der Nähe ist oder nicht.

Man kennt den Effekt von Radiogeräten mit schlechtem Empfang: Manchmal kann man ein störendes Rauschen hören, wenn man sich der Antenne nähert oder sich von ihr entfernt. „Der menschliche Körper kann elektrischen Strom leiten, und daher kann es auch zu einer Wechselwirkung zwischen einer Antenne und dem menschlichen Körper kommen, zumindest auf kurze Distanz“, erklärt Thomas Weiler.

„Nähert sich ein Finger dem Sägeblatt an, beeinflusst das die elektrische Schwingung im Sägeblatt. Das kann man detektieren, und es kommt zur Notabschaltung.“

Es ist nicht ganz einfach, einen menschlichen Finger zuverlässig von anderen Objekten zu unterscheiden – eine ausreichend große Menge Holz könnte einen genauso großen kapazitiven Einfluss haben wie der Arm eines Menschen. „Dieses Problem lösen wir durch die Geometrie des Sägeblattes. Wir können Fluktuationen der elektrischen Schwingung erkennen, die im Bereich der Zahneingriffsfrequenz liegen. Dies ist die Frequenz, mit der die Zähne eines Sägeblattes an einem fixen Punkt im Raum vorbeikommen.“, sagt Thomas Weiler.

„Nähert sich ein Finger, dann bemerkt man, dass sich punktuell ein Objekt mit höherer Leitfähigkeit nähert. Ein feuchter Baumstamm, der das Sägeblatt insgesamt ähnlich stark beeinflussen könnte, wirkt sich großräumiger aus. Dadurch hat der Finger eine andere Signatur als ein Holzstück, das geschnitten werden soll.“

Patentiert und kommerziell erhältlich

Die Sensorik zur Detektion von menschlichem Gewebe im Nahbereich einer Säge wurde von der TU Wien bereits patentiert – ebenso wie eine zweite Erfindung, die für das Gelingen des Projekts nötig war: Es genügt schließlich nicht, die Gefahr zu erkennen, das Gerät muss auch korrekt und mit extrem kurzer Latenzzeit darauf reagieren.

An der TU Wien wurde daher ein spezieller elektromagnetischer Aktor entwickelt, der das Sägeblatt in das Innere des Gerätes verschwinden lässt. Die Bewegung wird bereits in der ersten Millisekunde nach dem Erkennen des herannahenden Fingers eingeleitet.

Nach ungefähr fünf Millisekunden hat das Sägeblatt die Fluchtgeschwindigkeit erreicht - das bedeutet, dass sich das Sägeblatt jetzt schneller von der Hand entfernt, als der Mensch in Richtung Sägeblatt greifen kann.

Wichtig hierbei ist, dass die Rückzugsbewegung des Sägeblatts zwar hochdynamisch aber doch auf kontrollierte Art und Weise geschieht. Die Säge wird nicht beschädigt und die Maschine ist auf Knopfdruck innerhalb weniger Sekunden wieder einsatzbereit.

Technologisch umgesetzt und vermarktet wird die neue Sicherheits-Kreissäge nun von der Firma Felder, die den Entwicklungsprozess von Anfang an unterstützt hat.

„Wir freuen uns sehr, dass wir den Weg von der wissenschaftlichen Grundidee zur Markteinführung eines kommerziellen Produktes geschafft haben“, sagt Thomas Weiler. „Wir hoffen, dass sich die Technologie rasch durchsetzt, sodass möglichst viele Unfälle verhindert werden können.“

Die Patentierung der Technologie erfolgte mit Unterstützung des Forschungs- und Transfersupports der TU Wien.

Wissenschaftliche Ansprechpartner:

Dipl.-Ing. Thomas Weiler
Institut für Fertigungstechnik und Photonische Technologien
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-31126
thomas.weiler@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Supermagnete aus dem 3D-Drucker
18.02.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Innovatives Konzept für den effizienteren 3D-Druck
13.02.2020 | Technische Hochschule Nürnberg Georg Simon Ohm

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics