Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnete für die Fläche

11.11.2019

ETH-Wissenschaftler entwickelten würfelförmige magnetische Bausteine, die einerseits zu flächigen Objekten zusammengefügt werden können und sich andererseits über ein externes Magnetfeld steuern lassen. Sie eignen sich für Soft-Robotics-Anwendungen.

Wer schon einmal versucht hat, mehrere der kleinen, starken Würfelmagnete unmittelbar nebeneinander an einer Magnetwand zu befestigen, weiss es: Das geht nicht. Stattdessen ordnen sich die Magnete stets in einer Säule an, die senkrecht von der Magnetwand absteht.


Quadrupolmodule lassen sich zu flächigen Objekten zusammenfügen, auch zu «Pixel-Art»-Emojis wie diesen.

ETH Zürich / Hongri Gu


Dipolmagnet und Quadruoplmodul im Schema.

Quelle: Gu H et al. Science Robotics 2019

Ebenfalls beinahe unmöglich ist es, mehrere Reihen solcher Magnete so aneinanderzufügen, dass sich eine Fläche bildet. Grund dafür ist, dass Magnete sogenannte Dipole sind.

Gleiche Pole stossen sich ab, stattdessen heftet sich immer der Nordpol des einen Magneten an den Südpol eines anderen. Dadurch bildet sich eine Säule, in der alle Magnete gleich ausgerichtet sind.

Forschende der ETH Zürich haben nun würfelförmige magnetische Bausteine geschaffen, mit denen es erstmals möglich ist, flächige Objekte zu bilden. Die neuen Bausteine – die Forschenden nennen sie Module – sind keine Dipole, sondern Quadrupole.

Das heisst, sie haben je zwei Nord- und Südpole. Im Innern der im 3D-Druck aus Kunststoff gefertigten Module befinden sich je zwei kleine herkömmliche Dipolmagnete, und zwar so, dass jeweils deren gleiche Pole gegeneinander gerichtet sind (siehe Bild).

Diese Bausteine lassen sich schachbrettartig zu beliebigen flächigen Objekten zusammenfügen: Weil sich Süd- und Nordpol jeweils anziehen, hat ein Quadrupol-Baustein, dessen beide Südpole links und rechts liegen, auf seinen vier Seitenflächen als Nachbarn Bausteine, die um 90 Grad gedreht sind, also deren Nordpole links und rechts liegen.

Nach diesem Prinzip fertigten die Forscher farbige Module mit einer Kantenlänge von gut zwei Millimetern an. Zu Präsentationszwecken fügten sie sie zu «Pixel-Art»-Emojis zusammen. Mögliche Anwendungen gehen jedoch über diese Spielerei hinaus.

«Interessant scheinen uns vor allem Anwendungen im Bereich Soft Robotics», sagt Hongri Gu, Doktorand in der Gruppe von ETH-Professor Bradley Nelson und Erstautor der Arbeit, welcher die Wissenschaftler kürzlich in der Fachzeitschrift Science Robotics [http://dx.doi.org/10.1126/scirobotics.aax8977] veröffentlichten.

Quadrupol und Dipol zugleich

Der erwähnte Quadrupol dominiert die magnetischen Eigenschaften der Module. Allerdings ist es ein wenig komplizierter, denn zusätzlich zum starken Quadrupol konzipierten die Forscher in den Bausteinen einen schwachen Dipol. Dies erreichten sie, indem sie die ins Modul eingebetteten kleinen Magnete nicht parallel zueinander, sondern leicht abgewinkelt anordneten (siehe Bild).

«Dies führt dazu, dass sich die Module wie eine Kompassnadel an einem äusseren Magnetfeld ausrichten», erklärt ETH-Doktorand Gu. «Über ein veränderbares Magnetfeld ist es somit möglich, die aus den Modulen gebauten Objekte zu bewegen. In Kombination mit flexiblen Verbindungen kann man gar Roboter bauen, die sich durch ein Magnetfeld steuern lassen.»

Gu sagt, dass es in ihrer Arbeit zunächst darum gegangen sei, das neue Prinzip zu entwickeln. Es sei grössenunabhängig, und nichts spreche dagegen, nun sehr viel kleinere Quadrupolmodule zu entwickeln. Ausserdem untersuchen die Forscher, wie man die Module nutzen könnte, um eine lineare Struktur mithilfe eines Magnetfelds zu einem mehrdimensionalen Objekt zusammenzufügen.

Dies liesse sich in Zukunft auch in der Medizin nutzen: Es wäre denkbar, Objekte wie zum Beispiel Stents aus einem mit solchen Modulen bestückten Faden zu bilden. Diesen Faden könnten man vergleichsweise einfach minimal-invasiv über eine nur kleine Körperöffnung in den Körper einführen und dann im Körperinnern mithilfe eines Magnetfelds zur finalen mehrdimensionalen Struktur zusammenfügen.

Originalpublikation:

Gu H, Boehler Q, Ahmed D, Nelson BJ: Magnetic quadrupole assemblies with arbitrary shapes and magnetizations, Science Robotics 2019, 4: eaax8977, doi: 10.1126/scirobotics.aax8977 [http://dx.doi.org/10.1126/scirobotics.aax8977]

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)
Weitere Informationen:
http://www.ethz.ch

Weitere Berichte zu: 3D-Druck Bausteine Dipol ETH Kompassnadel Körperöffnung Magnete Magnetfeld Modul Module Nordpol Nordpole Quadrupol Roboter Robotics Stents

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht EU-Projekt GALACTIC entwickelt Lieferkette für Alexandrit-Laserkristalle
03.04.2020 | Laser Zentrum Hannover e.V.

nachricht Mit dem Laser Bodenschätze in der Tiefsee finden
31.03.2020 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics