Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaltmassivumformung: auch komplexe Bauteilherstellung virtuell und kostengünstig designen

29.03.2018

Bauteile für Automobile und Maschinen werden häufig in mehreren Massivumformschritten hergestellt. Dabei können die Werkstoffe bis an die Grenze ihrer Verformbarkeit belastet werden und unsichtbare Schäden auftreten, die wichtig für die Lebensdauervorhersage eines Bauteils sind. Bisher gebräuchliche Computersimulationen zur Auslegung eines Bauteils können die Schädigungsentwicklung in mehrstufigen Prozessen nicht immer präzise genug berechnen, um Ort und Zeitpunkt eines Materialversagens vorherzusagen. Dies leistet nun ein neues Simulationsmodell, das am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg entwickelt wurde.

Mit diesem Simulationstool, das die tatsächlichen Schädigungs- und Versagensmechanismen in metallischen Werkstoffen abbildet, können Massivumformunternehmen die Kosten bei Prozessauslegungen reduzieren und Entwicklungszeiten verkürzen. Zudem sind komplexere Bauteilgeometrien als bisher zu realisieren, die ohne die neue und präzisere Simulation nur sehr aufwändig verwirklicht werden könnten.


Umlaufender Riss im fließgepressten Napf: reales Teil (links) und Simulation (rechts).

Fraunhofer IWM


Beispiel Getriebewelle. Mitte: Schadensort im Umformexperiment, links: inkorrekte Schadensvorhersage nach Stand der Technik, rechts: korrekte Schadensvorhersage mit dem Fraunhofer IWM-Materialmodell.

Fraunhofer IWM

Schädigungsmodell für viele Werkstoffe einsetzbar

»Wir haben das neue Verfahren modular aufgebaut, damit es flexibel auf die große Anzahl der Werkstoffe einsetzbar ist«, erklärt Dr. Maksim Zapara, Leiter des Teams Massivumformung der Gruppe Umformprozesse am Fraunhofer IWM. Das Modell beschreibt, unter welchen Voraussetzungen sich bei der plastischen Verformung des Werkstoffs Poren bilden, unter welchen Bedingungen sie wachsen oder sich mehrere Poren zusammenschließen. Aus diesen Zusammenschlüssen können Makroporen, dann Mikrorisse und letztlich ein kritischer Makroriss entstehen.

»Je nach Materialzustand bestehen bereits im Gefüge des Ausgangswerkstoffs Poren, beim Umformen nimmt dann die plastische Deformation zu und es entstehen zusätzliche Poren an Einschlussteilchen und an Korngrenzen des Metalls«, sagt Zapara. Bisher gaben die Standardsimulationen lediglich eine Hilfestellung im Entscheidungsprozess für die Auslegung von Bauteilen ab: Das Expertenwissen war hierbei der wichtigste Faktor. Größere Vorhersagegenauigkeit liefern jedoch die so genannten mechanismenbasierten Schädigungsmodelle.

»Für Prozesse bei der Kaltmassivumformung haben wir im Rahmen eines IGF-Projekts das bekannte mechanismenbasierte Materialmodell nach Gurson, Tvergaard und Needleman, oder GTN-Modell, so erweitert, dass es beobachtete Mechanismen der duktilen Schädigung für die relevanten Materialien genauer abbildet als bisher«, so Zapara. Bei der duktilen Schädigung ist ein Material so stark belastet, dass es sich plastisch verformt und seine Mikrostruktur sich verändert. Bei Überbeanspruchung kann das Material brechen.

Neue Erkenntnisse zum Werkstoffverhalten bei hoher Dehnung und Druck

Als Grundlage für das neue Materialmodell wurden die physikalischen Ursachen für das Werkstoffverhalten in Kaltmassivumformprozessen am Fraunhofer IWM systematisch erforscht. In umfangreichen Mikrostrukturuntersuchungen fanden die Forscherinnen und Forscher beispielsweise heraus, dass sich bei der Umformung Poren insbesondere an nichtmetallischen Einschlussteilchen im Material bilden: Entweder zerbricht das Teilchen oder es löst sich vom umgebenden Material ab.

Entgegen der bisherigen Meinung, dass sich Poren schließen wenn das Material hohen Druckbelastungen ausgesetzt ist und damit Schädigungen quasi verschwinden, fand das Forschungsteam heraus, dass sich im Gegenteil neue Poren an Einschlussteilchen infolge von starkem Querfließen des Materials unter Druck bilden und damit größere Schädigungen entstehen können als bisher angenommen.

Modell bildet Vielzahl realer Schädigungsmechanismen ab

Die gefundenen Schädigungsmechanismen treten jedoch nicht in allen Werkstoffen gleichermaßen auf. Beispielsweise gibt es Mechanismen, die allein im Zusammenhang mit spröden Partikeln wie Mangansulfiden auftreten. Der modulare Aufbau des neuen Schädigungsmodells ermöglicht es, eine große Anzahl in der Anwendung zugänglicher Werkstoffe damit simulieren zu können: Je nach betrachtetem Werkstoff können Module an- oder abgeschaltet werden.

Es beschreibt zudem die physikalischen Ursachen der Schädigungen wie Porenzusammenschlüsse, Wachstum von Poren oder Bildung von Mikrorissen. Das neue Modell ist als Benutzer-Routine in das häufig genutzte Finite Elemente-Programm ABAQUS implementiert und kann auch in bestehenden Simulationsprogrammen für die Massivumformung umgesetzt werden. Dies ermöglicht den Umformbetrieben, ihre bestehenden Simulationstools zur Schadensvorhersage und Auslegung von Herstellungsprozessen mit der neuen Methode erweitert verwenden zu können.

Bessere Schadensvorhersage in komplexen Umformprozessen

Mit dem neuen modularen Schädigungsmodell simulierte das Forschungsteam industrielle Massivumformprozesse, bei denen in Realität bereits Bauteilschädigungen auftraten. »Die industriell etablierten Simulationsansätze konnten den tatsächlichen Schadensort nicht immer präzise genug vorhersagen.

Das am Fraunhofer IWM erweiterte GTN-Modell jedoch bestimmte den Ort und den Zeitpunkt des Versagens korrekt vorher, zum Beispiel an einer kaltfließgepressten Getriebewelle«, erläutert Zapara. Werden die nach dem Herstellungsprozess bestehenden Werkstoffeigenschaften wie lokale Verfestigung oder Eigenspannungen, die nun durch das neue Modell exakter bestimmt sind, als Eingangsgrößen für Simulationen des späteren Bauteilverhaltens im Betrieb genutzt, so sind auch dort genauere Simulationsaussagen möglich, beispielsweise zur Bauteillebensdauer.

Weitere Informationen:

https://www.iwm.fraunhofer.de/de/presse/pressemitteilungsliste/28_03_2018_kaltma... - Pressemitteilung auf der Instituts-Webseite

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Klima- und Höhensimulationsprüfstand für Motoren an der Hochschule Karlsruhe in Betrieb genommen
16.11.2018 | Hochschule Karlsruhe - Technik und Wirtschaft

nachricht BMBF-Forschungsprojekt AutoAdd: Wegbereiter der additiven Fertigung für die Automobilindustrie
12.11.2018 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics