Innovatives Konzept für den effizienteren 3D-Druck

Der 3D-Drucker mit dem neuartigen Druckkopf TH Nürnberg

Die additive Fertigung ist zukunftsweisend in der industriellen Produktion. Trotz stetiger Weiterentwicklungen ist es bisher allerdings nicht möglich, innerhalb eines gedruckten Bauteils unterschiedlich breite Kunststoffbahnen aufzubringen.

Prof. Dr.-Ing. Michael Koch von der TH Nürnberg entwickelt im aktuellen Forschungsprojekt „IvExAP“ einen innovativen Druckkopf, der variable Bahnbreiten ermöglicht und dadurch den 3D-Druck deutlich schneller und effizienter macht. Die STAEDTLER Stiftung fördert das Projekt mit 40.000 Euro.

Nürnberg, 12. Februar 2020. Die Bedeutung der additiven Fertigung in der industriellen Produktion steigt mit den möglichen Funktionen des 3D-Druckers. Prof. Dr.-Ing. Michael Koch von der Fakultät Maschinenbau und Versorgungstechnik der TH Nürnberg ist hier ein Durchbruch gelungen:

Er ermöglicht es, unterschiedlich breite Kunststoffbahnen in einem Prozessschritt zu drucken – das war bisher nicht möglich. Der Wissenschaftler hat eine Methode entwickelt, um mit einem 3D-Drucker variable Bahnen aufzubringen.

In seinem Forschungsprojekt „Innovatives Extruderkonzept für schnelle und effiziente Additive Produktion“, kurz „IvExAP“, entwickelt er im Institut für Chemie, Material- und Produktentwicklung der TH Nürnberg einen einsetzbaren Prototyp eines Druckkopfs für die additive Fertigung.

Die gängigste Methode der additiven Fertigung ist die sogenannte „Schmelzschichtung“. Bei diesem Verfahren baut der Drucker das Werkstück schichtweise aus einem schmelzfähigen Kunststoff auf. Der Druckkopf, ein sogenannter Extruder, erhitzt den Kunststoff und trägt ihn in rechtwinkligen Bahnen auf das Werkstück auf.

Die Schichten verbinden sich miteinander und das Material härtet danach sofort aus. Feine Düsen mit einer Düsenbohrung von 0,1 bis 0,4 Millimetern können kleinste Details darstellen, benötigen dafür allerdings eine längere Druckzeit.

Grobe Düsen mit einem Durchmesser von 0,5 bis hin zu zwei Millimetern arbeiten zwar mit einer höheren Druckgeschwindigkeit, durch die größere Schichtdicke gehen allerdings die Details verloren. „Den Widerspruch zwischen Auflösung und Druckgeschwindigkeit kann die Industrie theoretisch durch eine Düse lösen, die einen unterschiedlich dicken Kunststofffaden extrudieren kann“, erklärt Prof. Dr.-Ing. Michael Koch.

„Das ist technisch allerdings nicht so einfach, deshalb forsche ich mit meinem Team an einer neuen Möglichkeit, einen Kunststofffaden bzw. -strang mit unterschiedlichen Durchmessern im Bereich von 0,2 bis hin zu einem Millimeter zu erzeugen.“

Bislang haben die 3D-Drucker nur eine runde Düsenbohrung. In ihrem Projekt entwickeln Prof.
Dr.-Ing. Michael Koch und sein Team eine ovale und eine rechteckige Düsenöffnung. Dieses sogenannte Langloch ist einfach aufzubauen und funktioniert mit den vorhandenen Standard-Extrudern – dadurch arbeitet es auch im täglichen Einsatz stabil.

„Um die verschiedenen Düsenöffnungen in alle Richtungen verwenden zu können, ist es erforderlich, dass der komplette Extruder oder zumindest die Düse drehbar ist. Je nach Winkelstellung wird dann mit der schmalen Seite, der breiten Seite oder einer Zwischenposition gedruckt. Dadurch erhalten wir unterschiedlich dicke Kunststoffbahnen bei einer konstanten Druckgeschwindigkeit. Wir können sowohl große Flächen als auch kleine Details innerhalb eines Arbeitsschrittes drucken, ohne den Drucker zu stoppen“, so Prof. Dr.-Ing. Michael Koch.

Bisherige Lösungsansätze der Industrie brachten keinen durchschlagenden Erfolg. Austauschbare Düsen am Extruder sind zeitaufwändig, zudem muss der 3D-Drucker nach jedem Düsenwechsel neu kalibriert werden. Bei Druckern mit mehreren Düsen kommt es zu ungewünschtem Tropfen und Verschmieren des Materials.

Alle bisherigen Versuche, einen 3D-Drucker mit unterschiedlichen Düsendurchmessern zu entwickeln, stellten sich als relativ kompliziert und teuer heraus. Die Weiterentwicklung des Extruders durch Prof. Dr.-Ing. Michael Koch und sein Forschungsteam macht das 3D-Druck-Verfahren deutlich effizienter und schneller.

Die geringen Kosten ermöglichen es auch kleinen und mittleren Unternehmen, die zukunftsweisende Technik der additiven Fertigung einzusetzen.
Die STAEDTLER Stiftung fördert erfreulicherweise dieses hochinnovative Forschungsprojekt mit 40.000 Euro.

Hinweis für Redaktionen:
Kontakt:
Hochschulkommunikation, Tel. 0911/5880-4101, E-Mail: presse@th-nuernberg.de

Media Contact

Jasmin Bauer idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.th-nuernberg.de

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer