Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Dip-Modul für die Serienproduktion moderner PoP-Designs

13.11.2007
Um immer mehr Funktionen auf kleinstem Raum unterzubringen, werden immer häufiger Bauelemente in PoP (Package-on-Package)-Anordnung auf Leiterplatten bestückt. Für die Serienproduktion dieses innovativen Designs hat Siemens ein neues Dip (Dual in-line package)-Modul entwickelt: Die Linear Dipping Unit X (LDU X) ist speziell für die durchsatzstarke Siplace-X-Bestückautomatenserie geeignet und wird erstmals auf der Productronica 2007 vorgestellt.

Besonders für die Kombination von Prozessor und Speicher ist die PoP-Anordnung, auch CSP (Chip Scale Package)-Stacking genannt, eine effiziente Lösung. Sie benötigt weniger Fläche auf der Leiterplatte bei kurzen Signalwegen und geringeren Hochfrequenz-Interferenzen. Damit das obere CSP-Bauteil eines solchen „Stapels“ sicher gelötet wird, muss es in einem Dip-Modul mit Flussmittel benetzt werden, bevor es auf das untere Bauteil bestückt wird.


Bei der PoP (Package-on-Package)-Anordnungsform werden zwei Bauelemente übereinander bestückt. Ein solches Design spart Platz auf der Leiterplatte und sorgt für kurze Signalwege.

Für die neue leistungsstarke Siplace-X-Serie wurde jetzt die Linear Dipping Unit LDU X entwickelt, die auf der mechanischen und elektrischen Schnittstelle der X-Förderer aufbaut. LDU X arbeitet mit einem Druckkopf, der unterhalb des Verfahrwegs des Bestückkopfs angebracht ist. Das benötigte Flussmittel wird im Druckkopf bevorratet und ist somit gut gegen Umwelteinflüsse geschützt. Nach dem Druckvorgang fährt die mit Flussmittel benetzte Dip-Platte nach oben zum höchsten Punkt der Linear Dipping Unit. Der Bestückkopf erreicht sie dort einfach und ohne mit dem Druckkopf zu kollidieren.

In der Linear Dipping Unit LDU X integrierte Funktionen gewährleisten einen besonders wartungsarmen Betrieb in der Serienproduktion. Zum Beispiel lässt sich die Schichtdicke steuern – bei 20 bis 80 Mikrometer kleinen Kontaktflächen mit einer Genauigkeit von ± 3 Mikrometer und bei 50 bis 400 Mikrometer großen Kontaktflächen im Bereich ± 5 Mikrometer. Der Druckkopf enthält ein Depot für Flussmittel und lässt sich mit einer Vorrichtung zum automatischen Nachfüllen aus einem Vorratsbehälter ausstatten. Dies ermöglicht einen vollautomatischen Betrieb ohne Unterbrechungen. Die Viskosität der eingesetzten Flussmittel liegt im Bereich 2.500 bis 150.000 cp (centipoise).

... mehr zu:
»Dipping »LDU »Mikrometer »Unit
Leseranfragen unter dem Kennzeichen „EA 1682“ bitte an:
Siemens Automation and Drives
Electronics Assembly Systems
Susanne Oswald
E-mail: susanne.oswald@siemens.com

Susanne Oswald | Siemens A&D
Weitere Informationen:
http://www.siplace.com
http://www.siemens.com/automation/presse

Weitere Berichte zu: Dipping LDU Mikrometer Unit

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Auf dem Weg zum sauberen Verbrennungsmotor
05.09.2018 | Technische Universität München

nachricht Einfach verzahnen: Neue TNC-Zyklen für den Werkstatttrend Wälzschälen
22.08.2018 | DR. JOHANNES HEIDENHAIN GmbH

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics