Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bildoptimierung von Videosequenzen mit hohem Dynamikbereich

19.11.2019

An der Hochschule RheinMain ist ein Forschungsprojekt zur Verbesserung der Bildqualität in Videosequenzen gestartet. Dieses baut auf dem ebenfalls an der HSRM entwickelten Verfahren zur Verbesserung des Kontrasts bei Live-Übertragungen auf. Auf Basis dieser Erkenntnisse soll eine Softwarelösung entwickelt werden, die auch in weiteren Anwendungsgebieten, wie dem Sicherheits- oder Automobilbereich eingesetzt werden kann. Das Bundesministerium für Wirtschaft und Energie fördert das Forschungsvorhaben mit rund 84.000 Euro.

In Videoaufzeichnungen, bei denen ein Teil des Bildes von der Sonne angestrahlt wird und ein weiterer Teil im Schatten liegt, ist es meist nicht möglich, Details in beiden Bildbereichen klar erkennbar darzustellen, da die Kameraeinstellung entweder an den hellen oder den dunklen Bildbereich angepasst werden muss.


Benjamin Donderer, Mitglied des BOS-Forschungsteams, im Labor der Medientechnik

© Jan Michael Hosan

Um Details sowohl in hellen als auch in dunklen Bildbereichen sichtbar zu machen, wird in der Fotografie bereits seit längerem das sogenannte Tonemapping eingesetzt, bei dem der Dynamikumfang der Aufnahme reduziert, also die Differenz zwischen den hellsten und dunkelsten Stellen des Bildes verringert wird.

Mit dem Forschungsprojekt „EVI-Entwicklung eines Systems zur Verbesserung des Dynamikumfangs bei Fernsehbildern“ haben Prof. Mike Christmann und Lucien Lenzen dieses Verfahren erstmals auf live ausgestrahlte Bewegtbilder übertragen und eine virtuelle Blendeneinstellung entwickelt.

„Mit Hilfe eines Algorithmus können so in allen Bereichen Details auch auf handelsüblichen Fernsehern deutlich sichtbar dargestellt werden“, so Prof. Christmann.

Neue Anwendungsbereiche

Im Forschungsprojekt „Bildoptimierung von Videosequenzen mit hohem Dynamikbereich“ (BOS) wollen die Forschenden das entwickelte Verfahren nun während einer Praxiserprobung in realen Anwendungssituationen testen und so seine Funktionsfähigkeit nachweisen. Zudem sollen die möglichen Anwendungsbereiche der Methode erweitert werden.

Es soll eine Software entwickelt werden, die in Echtzeit arbeitet und über die Eingabe von Parametern flexibel an unterschiedliche Aufgaben angepasst werden kann. In Frage kämen hier beispielsweise der Sicherheits- oder der Automobilbereich, etwa beim elektronischen Rückspiegel oder beim autonomen Fahren.

„Auch in diesen Anwendungsfeldern ist es wichtig, dass Details sowohl in den hellen als auch in den dunklen Bildbereichen gut erkennbar sind und dass die Daten in Echtzeit verarbeitet werden“, so Lenzen.

Zusätzlich soll das Verfahren angepasst werden, um nicht nur während der Übertragung, sondern bereits im Rahmen der Produktion angewendet werden zu können. Viele Fernseh- und Filmproduktionen werden bereits mit einem sehr großen Dynamikumfang aufgezeichnet.

Dieser kann jedoch meist nicht übertragen beziehungsweise auf den Wiedergabegeräten dargestellt werden, sodass das Bild aufwändig nachbearbeitet werden muss.

Mit einer angepassten Version des patentierten Live-Broadcast-Verfahrens könnte eine erste automatische Farbkorrektur durchgeführt und der Vorgang so erheblich vereinfacht werden.

Wissenschaftliche Ansprechpartner:

Prof. Mike Christmann, Mike.Christmann@hs-rm.de

Matthias Munz | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hs-rm.de/

Alle Nachrichten aus der Kategorie: Kommunikation Medien >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics